skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Does EPICS as a Pre-college Program Foster Engineering Identity Development as Correlated to Doing Engineering?
Engineering Projects in Community Service (EPICS) is a middle and high school program, with a focus on the engineering design process and delivering real solutions to community partners. In order to evaluate the efficacy of the program, a pre-post test design was implemented to examine changes in attitudinal and behavioral measures. Pre-data were collected at the beginning of the school year, and paralleled the program’s registration process to ensure high response rates; post- data were then collected at the end of the school year. Demographic data demonstrate that of all 2018 - 2019 registered EPICS participants (N = 414), 41 percent were female; 66.6 percent were non-white; and 30 percent held first generation student status. Importantly, 68.5 percent of participants reported that neither parent or guardian is an engineer, and 65.7 percent of participants reported that they “definitely will attend” a four-year university. These data suggest that the current sample is ideal for evaluating EPICS as a pre-college engineering education program, because most participants are not experiencing engineering in the home and may be less susceptible to parental pressures for choosing engineering as a college major and potential career, but have salient intentions to attend college. In addition to collecting demographic information, participants completed a series of measures designed to capture attitudes and behaviors toward engineering as a potential career field. The main measures of interest include Engineering Identity and Doing Engineering. Engineering Identity scores reflect participants’ personal and professional identities as engineers; Doing Engineering scores indicate participants’ prior experience with engineering and its related technical skills. Baseline data on the sample reveal average engineering identities (M = 38.41, SD = 6.44, 95% CI [37.77, 39.05]). A series of t-tests was conducted to examine gender differences in these measures. Men reported significantly higher engineering identities (M = 37.65, SD = 6.58) compared to women (M = 39.54, SD = 6.09), t(360) = 2.95, p = .003, F = .037. Men reported stronger and more frequent experiences with engineering, indicated by their higher Doing Engineering scores (M = 13.75, SD = 5.16), compared to women (M = 15.31, SD = 4.69), t(368) = 3.13, p = .002, F = .003. Interestingly, first generation students reported higher engineering identities (M = 37.45, SD = 6.53) compared to non-first generation students (M = 39.66, SD = 5.99), t(375) = 3.46, p = .001, F = 1.39. To examine the relationship between Engineering Identity and Doing Engineering, a correlation analysis was conducted and a moderate, positive relationship emerged, such that as students’ experience with engineering increased, their engineering identities also increased (R = .463, p > .000).  more » « less
Award ID(s):
1744539
PAR ID:
10297616
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2020 ASEE Virtual Annual Conference Content Access
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Engineering Projects in Community Service (EPICS) High utilizes human-centered design processes to teach high school students how to develop solutions to real-world problems within their communities. The goals of EPICS High are to utilize both principles from engineering and social entrepreneurship to engage high and middle school students as problem-solvers and spark interest in STEM careers. Recently, the Cisco corporate advised fund at the Silicon Valley Community Foundation, granted Arizona State University funds to expand EPICS High to underrepresented students and study the student outcomes from participation in this innovative program. In this exploratory study we combined qualitative methods—in person observations and informal interviews—along with pre and post surveys with high school students, to answer the questions: What skills do students gain and how does their mindset about engineering entrepreneurship develop through participation in EPICS High? Research took place in Title I schools (meaning they have a high number of students from low-income families) as well as non-Title I schools. Our preliminary results show that students made gains in the following areas: their attitudes toward engineering; ability to improve upon existing ideas; incorporating stakeholders; overcoming obstacles; social responsibility; and appreciation of multiple perspectives when solving engineering problems. While males have better baseline scores for most measures, females tend to have the most growth in many of these areas. We conclude that these initial measures show positive outcomes for students participating in EPICS High, and provide questions for further research. 
    more » « less
  2. A major goal in Engineering training in the U.S. is to continue to both grow and diversify the field. Project- and service-based forms of experiential, problem-based learning are often implemented with this as a goal, and Engineering Projects in Community Service (EPICS) High is one of the more well-regarded and widely implemented. Yet, the evidence based on if and how participation in such programs shapes student intentions and commitment to STEM pathways is currently limited, most especially for pre-college programming. This study asks: How do high school students’ engineering mindsets and their views of engineering/engineers change as they participate in project–service learning (as implemented through an EPICS High curriculum)? This study employed a mixed method design, combining pre- and post-test survey data that were collected from 259 matched students (63% minority, 43% women) enrolling in EPICS High (total of 536 completed pre-tests, 375 completed post-tests) alongside systematic ethnographic analysis of participant observation data conducted in the same 13 socioeconomically diverse schools over a two-year period. Statistical analyses showed that participants score highly on engineering-related concepts and attitudes at both pre- and post-test. These did not change significantly as a result of participation. However, we detected nuanced but potentially important changes in student perspectives and meaning, such as shifting perceptions of engineering and gaining key transversal skills. The value of participation to participants was connected to changes in the meaning of commitments to pursue engineering/STEM. 
    more » « less
  3. Measures of subject-related role identities in physics and math have been developed from research on the underlying constructs of identity in science education. The items for these measures capture three constructs of identity: students’ interest in the subject, students’ feeling of recognition by others, and students’ beliefs about their performance/competence in the subject area. In prior studies with late secondary and early post-secondary students, participants did not distinguish between performance beliefs (e.g., believing that they can do well in a particular subject) and competence beliefs (e.g., believing that they can understand a particular subject); therefore, performance/competence beliefs are measured as a single construct. These validated measures have been successful in predicting STEM career choices including physics, math, and engineering. Based on these measures of identity, literature on engineering identity, and my prior work on understanding engineering choice and belongingness through students’ science and math identities at the transition from high school to college, I developed a set of new engineering identity measures that capture and overall identification as an engineer, future engineering career identification, and students’ engineering-related interest, recognition, and performance/competence beliefs. I conducted a pilot survey of 371 first-year engineering students at three institutions within the U.S. during the spring semester of 2015. An exploratory factor analysis (EFA) was performed to examine the underlying structure of the piloted questions about students’ engineering identity. The measures loaded on three separate constructs that were consistent with the hypothesized constructs of interest, performance/competence and recognition. The developed items were used in a subsequent study deployed in the fall semester of 2015 that measured more than 2500 first-year engineering students’ attitudes and beliefs at four institutions within the U.S. The data on engineering identity measures from this second survey were analyzed using confirmatory factor analysis (CFA). The results indicated that the developed measures do extract a significant portion of the average variance in the latent constructs and the internal consistency of the measures (Cronbach’s α) falls within the acceptable and better range. The development of these items provides ways for engineering education researchers to more deeply explore the underlying self-beliefs in students’ engineering identity formation through quantitative measures with strong evidence for validity. 
    more » « less
  4. Developing a strong engineering identity, or sense of belonging in engineering, is essential to pursuing and persisting in the field. Participating in an engineering outreach program is widely seen as an opportunity for youth to ignite and increase an identity as an engineer. As early as elementary school, youth evaluate their experiences, interests, and successes to make choices about possible futures. Although these early experiences and choices influence future participation in, pursuit of, and persistence in engineering, studies of engineering identity development have concentrated on undergraduate and high school learners. This study examines engineering identity development in elementary school students participating in an engineering education outreach program, expanding understanding of early influences on engineering identity formation. This study asks: How do students’ descriptions of their engineering experiences indicate the influence their experiences have on their engineering identity development? This study is embedded in an NSF-funded study of a university-led engineering education outreach program. In this program, pairs of university students facilitated weekly hour-long engineering design challenges in elementary classrooms throughout the school year. At the end of the academic year, we conducted semi-structured interviews with 76 fourth- and fifth-grade students who had participated in the outreach program. The interviewers asked students to rate their enjoyment of and skills in engineering within the context of the program. Iterative qualitative coding was used to elicit emergent patterns in students’ responses and examine them in the context of the Godwin et al (2016) engineering identity framework, using the constructs of interest, performance/competence, and recognition. Responses were then analyzed based on participants’ gender to understand and identify potential differences in influences on engineering identity development. Findings indicate that student talk around interest tended to be more positive, while student talk around performance/competence tended to be more negative, indicating the type of relationships students had with their interest in engineering compared to their perceived skills in doing engineering. However, within the construct of performance/competence, girls used negative language at a higher frequency than boys. Within this construct-based code, there were categories with large variations in positive and negative talk by gender. These gendered patterns provide insight into the differing ways girls and boys interact with engineering and how they start to develop engineering identities. 
    more » « less
  5. The Graduate Research Identity Development program (GRID) is an initiative in the College of Engineering at North Carolina A&T State University, sponsored by the National Science Foundation since 2019. The program offers seminar-type lectures supplemented with activities designed to help graduate students develop critical skills for research-based careers. The program is focused on graduate engineering students but is open to graduate students from all programs. Students also choose mentors from within and outside the university with the goal of increasing their sense of belonging to the field and their identities as research engineers. As part of this program, a pilot study is in progress, aimed at performing a full-scale network analysis of student interactions. A web-based survey was administered to collect information about students in and outside the College of Engineering who participate in the GRID program sessions. The survey was designed to collect information on the relationship networks (or lack thereof) that students are involved in as they matriculate through their graduate program. It assesses things such as how and where the students interact with one another, members of faculty and staff, and with contacts from intramural and extramural organizations. Several items are also used to assess students’ perceptions of themselves as research engineers. In this paper, we focus on the interactions of students in the classroom. More specifically, we form networks based on the student answers about the classes they have taken in different departments. We then analyze the resultant networks and contrast certain graph theoretic properties to students’ scores on the research engineer identity items. Do students that are in the periphery, or students that have more connections attain higher research engineer identity scores? Do students that form complete subnetworks (cliques) or core-periphery structures (induced stars) have higher scores than others? This paper presents the findings from this pilot study from the network analysis on this cohort of students. In summary, we find that students with high eigenvector centrality scores and those who form larger cliques possess significantly higher research engineer identity scores. 
    more » « less