skip to main content


Title: Testing a Recommender System for Self-Actualization
Traditionally, recommender systems were built with the goal of aiding users’ decision-making process by extrapolating what they like and what they have done to predict what they want next. However, in attempting to personalize the suggestions to users’ preferences, these systems create an isolated universe of information for each user, which may limit their perspectives and promote complacency. In this paper, we describe our research plan to test a novel approach to recommender systems that goes beyond “good recommendations” that supports user aspirations and exploration.  more » « less
Award ID(s):
1565809
NSF-PAR ID:
10061088
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the Second Workshop on Engineering Computer-Human Interaction in Recommender Systems co-located with the 9th ACM SIGCHI Symposium on Engineering Interactive Computing Systems
Page Range / eLocation ID:
3-9
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. While substantial advances have been made in recommender systems -- both in general and for news -- using datasets, offline analyses, and one-shot experiments, longitudinal studies of real users remain the gold standard, and the only way to effectively measure the impact of recommender system designs (algorithmic and otherwise) on long-term user experience and behavior. While such infrastructure exists for studies within some individual organizations, the extensive cost and effort to build the systems, content streams, and user base make it prohibitive for most researchers to conduct such studies. We propose to develop shared research infrastructure for the research community, and have received funding to gather community input on requirements, resources, and research goals for such an infrastructure. If the full infrastructure proposal is funded, it would result in recruiting a community of thousands of users who agree to use a news delivery application within which various researchers would be install and conduct experiments. In this short paper we outline what we have heard and learned so far and present a set of questions to be directed to INRA attendees to gather their feedback at the workshop. 
    more » « less
  2. null (Ed.)
    The growing amount of online information today has increased opportunity to discover interesting and useful information. Various recommender systems have been designed to help people discover such information. No matter how accurately the recommender algorithms perform, users’ engagement with recommended results has been complained being less than ideal. In this study, we touched on two human-centered objectives for recommender systems: user satisfaction and curiosity, both of which are believed to play roles in maintaining user engagement and sustain such engagement in the long run. Specifically, we leveraged the concept of surprise and used an existing computational model of surprise to identify relevantly surprising health articles aiming at improving user satisfaction and inspiring their curiosity. We designed a user study to first test the validity of the surprise model in a health news recommender system, called LuckyFind. Then user satisfaction and curiosity were evaluated. We find that the computational surprise model helped identify surprising recommendations at little cost of user satisfaction. Users gave higher ratings on interestingness than usefulness for those surprising recommendations. Curiosity was inspired more for those individuals who have a larger capacity to experience curiosity. Over half of the users have changed their preferences after using LuckyFind, either discovering new areas, reinforcing their existing interests, or stopping following those they did not want anymore. The insights of the research will make researchers and practitioners rethink the objectives of today’s recommender systems as being more human-centered beyond algorithmic accuracy. 
    more » « less
  3. As widely used in data-driven decision-making, recommender systems have been recognized for their capabilities to provide users with personalized services in many user-oriented online services, such as E-commerce (e.g., Amazon, Taobao, etc.) and Social Media sites (e.g., Facebook and Twitter). Recent works have shown that deep neural networks-based recommender systems are highly vulnerable to adversarial attacks, where adversaries can inject carefully crafted fake user profiles (i.e., a set of items that fake users have interacted with) into a target recommender system to promote or demote a set of target items. Instead of generating users with fake profiles from scratch, in this paper, we introduce a novel strategy to obtain “fake” user profiles via copying cross-domain user profiles, where a reinforcement learning-based black-box attacking framework (CopyAttack+) is developed to effectively and efficiently select cross-domain user profiles from the source domain to attack the target system. Moreover, we propose to train a local surrogate system for mimicking adversarial black-box attacks in the source domain, so as to provide transferable signals with the purpose of enhancing the attacking strategy in the target black-box recommender system. Comprehensive experiments on three real-world datasets are conducted to demonstrate the effectiveness of the proposed attacking framework. 
    more » « less
  4. Today’s recommender systems are criticized for recommending items that are too obvious to arouse users’ interest. That is why the recommender systems research community has advocated some ”beyond accuracy” evaluation metrics such as novelty, diversity, coverage, and serendipity with the hope of promoting information discovery and sustain users’ interest over a long period of time. While bringing in new perspectives, most of these evaluation metrics have not considered individual users’ difference: an open-minded user may favor highly novel or diversified recommendations whereas a conservative user’s appetite for novelty or diversity may not be that large. In this paper, we developed a model to approximate an individual’s curiosity distribution over different levels of stimuli guided by the well-known Wundt curve in Psychology. We measured an item’s surprise level to assess the stimulation level and whether it is in the range of the user’s appetite for stimulus. We then proposed a recommendation system framework that considers both user preference and appetite for stimulus where the curiosity is maximally aroused. Our framework differs from a typical recommender system in that it leverages human’s curiosity to promote intrinsic interest with the system. A series of evaluation experiments have been conducted to show that our framework is able to rank higher the items with not only high ratings but also high response likelihood. The recommendation list generated by our algorithm has higher potential of inspiring user curiosity compared to traditional approaches. The personalization factor for assessing the stimulus (surprise) strength further helps the recommender achieve smaller (better) inter-user similarity. 
    more » « less
  5. Today’s recommender systems are criticized for recommending items that are too obvious to arouse users’ interests. Therefore the research community has advocated some ”beyond accuracy” evaluation metrics such as novelty, diversity, and serendipity with the hope of promoting information discovery and sustaining users’ interests over a long period of time. While bringing in new perspectives, most of these evaluation metrics have not considered individual users’ differences in their capacity to experience those ”beyond accuracy” items. Open-minded users may embrace a wider range of recommendations than conservative users. In this paper, we proposed to use curiosity traits to capture such individual users’ differences. We developed a model to approximate an individual’s curiosity distribution over different stimulus levels. We used an item’s surprise level to estimate the stimulus level and whether such a level is in the range of the user’s appetite for stimulus, calledComfort Zone. We then proposed a recommender system framework that considers both user preference and theirComfort Zonewhere the curiosity is maximally aroused. Our framework differs from a typical recommender system in that it leverages human’sComfort Zonefor stimuli to promote engagement with the system. A series of evaluation experiments have been conducted to show that our framework is able to rank higher the items with not only high ratings but also high curiosity stimulation. The recommendation list generated by our algorithm has higher potential of inspiring user curiosity compared to the state-of-the-art deep learning approaches. The personalization factor for assessing the surprise stimulus levels further helps the recommender model achieve smaller (better) inter-user similarity.

     
    more » « less