Today’s recommender systems are criticized for recommending items that are too obvious to arouse users’ interests. Therefore the research community has advocated some ”beyond accuracy” evaluation metrics such as novelty, diversity, and serendipity with the hope of promoting information discovery and sustaining users’ interests over a long period of time. While bringing in new perspectives, most of these evaluation metrics have not considered individual users’ differences in their capacity to experience those ”beyond accuracy” items. Open-minded users may embrace a wider range of recommendations than conservative users. In this paper, we proposed to use curiosity traits to capture such individual users’ differences. We developed a model to approximate an individual’s curiosity distribution over different stimulus levels. We used an item’s surprise level to estimate the stimulus level and whether such a level is in the range of the user’s appetite for stimulus, called
- Award ID(s):
- 1910696
- PAR ID:
- 10298107
- Date Published:
- Journal Name:
- CHIIR '21: Proceedings of the 2021 ACM SIGIR Conference on Human Information Interaction and Retrieval
- Page Range / eLocation ID:
- 163 to 172
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Comfort Zone . We then proposed a recommender system framework that considers both user preference and theirComfort Zone where the curiosity is maximally aroused. Our framework differs from a typical recommender system in that it leverages human’sComfort Zone for stimuli to promote engagement with the system. A series of evaluation experiments have been conducted to show that our framework is able to rank higher the items with not only high ratings but also high curiosity stimulation. The recommendation list generated by our algorithm has higher potential of inspiring user curiosity compared to the state-of-the-art deep learning approaches. The personalization factor for assessing the surprise stimulus levels further helps the recommender model achieve smaller (better) inter-user similarity. -
Today’s recommender systems are criticized for recommending items that are too obvious to arouse users’ interest. That is why the recommender systems research community has advocated some ”beyond accuracy” evaluation metrics such as novelty, diversity, coverage, and serendipity with the hope of promoting information discovery and sustain users’ interest over a long period of time. While bringing in new perspectives, most of these evaluation metrics have not considered individual users’ difference: an open-minded user may favor highly novel or diversified recommendations whereas a conservative user’s appetite for novelty or diversity may not be that large. In this paper, we developed a model to approximate an individual’s curiosity distribution over different levels of stimuli guided by the well-known Wundt curve in Psychology. We measured an item’s surprise level to assess the stimulation level and whether it is in the range of the user’s appetite for stimulus. We then proposed a recommendation system framework that considers both user preference and appetite for stimulus where the curiosity is maximally aroused. Our framework differs from a typical recommender system in that it leverages human’s curiosity to promote intrinsic interest with the system. A series of evaluation experiments have been conducted to show that our framework is able to rank higher the items with not only high ratings but also high response likelihood. The recommendation list generated by our algorithm has higher potential of inspiring user curiosity compared to traditional approaches. The personalization factor for assessing the stimulus (surprise) strength further helps the recommender achieve smaller (better) inter-user similarity.more » « less
-
The concept of surprise has special significance in information retrieval in attracting user attention and arousing curiosity. In this paper, we introduced two computational measures of calculating the amount of surprise contained in a piece of text, and validated with the perceived surprise by users with different background knowledge expertise. We utilized a crowdsourcing approach and a lab-based user study to reach a large amount of users. The implication could be used to propose or refine future computational approaches to better predict human feeling of surprise triggered by reading a body of text.more » « less
-
Serendipitous recommendations have emerged as a compelling approach to deliver users with unexpected yet valuable information, contributing to heightened user satisfaction and engagement. This survey presents an investigation of the most recent research in serendipity recommenders, with a specific emphasis on deep learning recommendation models. We categorize these models into three types, distinguishing their integration of the serendipity objective across distinct stages: pre-processing, in-processing, and post-processing. Additionally, we provide a review and summary of the serendipity definition, available ground truth datasets, and evaluation experiments employed in the field. We propose three promising avenues for future exploration: (1) leveraging user reviews to identify and explore serendipity, (2) employing reinforcement learning to construct a model for discerning appropriate timing for serendipitous recommendations, and (3) utilizing cross-domain learning to enhance serendipitous recommendations. With this review, we aim to cultivate a deeper understanding of serendipity in recommender systems and inspire further advancements in this domain.
-
null (Ed.)Though recommender systems are defined by personalization, recent work has shown the importance of additional, beyond-accuracy objectives, such as fairness. Because users often expect their recommendations to be purely personalized, these new algorithmic objectives must be communicated transparently in a fairness-aware recommender system. While explanation has a long history in recommender systems research, there has been little work that attempts to explain systems that use a fairness objective. Even though the previous work in other branches of AI has explored the use of explanations as a tool to increase fairness, this work has not been focused on recommendation. Here, we consider user perspectives of fairness-aware recommender systems and techniques for enhancing their transparency. We describe the results of an exploratory interview study that investigates user perceptions of fairness, recommender systems, and fairness-aware objectives. We propose three features – informed by the needs of our participants – that could improve user understanding of and trust in fairness-aware recommender systems.more » « less