Abstract Plants respond to increasing atmospheric CO2 concentrations by reducing leaf nitrogen content and photosynthetic capacity—patterns that correspond with increased net photosynthesis and growth. Despite the longstanding notion that nitrogen availability regulates these responses, eco-evolutionary optimality theory posits that leaf-level responses to elevated CO2 are driven by leaf nitrogen demand for building and maintaining photosynthetic enzymes and are independent of nitrogen availability. In this study, we examined leaf and whole-plant responses of Glycine max L. (Merr) subjected to full-factorial combinations of two CO2, two inoculation, and nine nitrogen fertilization treatments. Nitrogen fertilization and inoculation did not alter leaf photosynthetic responses to elevated CO2. Instead, elevated CO2 decreased the maximum rate of ribulose-1,5-bisophosphate oxygenase/carboxylase (Rubisco) carboxylation more strongly than it decreased the maximum rate of electron transport for ribulose-1,5-bisphosphate (RuBP) regeneration, increasing net photosynthesis by allowing rate-limiting steps to approach optimal coordination. Increasing fertilization enhanced positive whole-plant responses to elevated CO2 due to increased below-ground carbon allocation and nitrogen uptake. Inoculation with nitrogen-fixing bacteria did not influence plant responses to elevated CO2. These results reconcile the role of nitrogen availability in plant responses to elevated CO2, showing that leaf photosynthetic responses are regulated by leaf nitrogen demand while whole-plant responses are constrained by nitrogen availability.
more »
« less
Inorganic nitrogen form: a major player in wheat and Arabidopsis responses to elevated CO 2
Critical for predicting the future of primary productivity is a better understanding of plant responses to rising atmospheric carbon dioxide (CO2) concentration. This review considers recent results on the role of the inorganic nitrogen (N) forms nitrate (NO3–) and ammonium (NH4+) in determining the responses of wheat and Arabidopsis to elevated atmospheric CO2 concentration. Here, we identify four key issues: (i) the possibility that different plant species respond similarly to elevated CO2 if one accounts for the N form that they are using; (ii) the major influence that plant–soil N interactions have on plant responses to elevated CO2; (iii) the observation that elevated CO2 may favor the uptake of one N form over others; and (iv) the finding that plants receiving NH4+ nutrition respond more positively to elevated CO2 than those receiving NO3– nutrition because elevated CO2 inhibits the assimilation of NO3– in shoots of C3 plants. We conclude that the form and amount of N available to plants from the rhizosphere and plant preferences for the different N forms are essential for predicting plant responses to elevated CO2.
more »
« less
- Award ID(s):
- 1358675
- PAR ID:
- 10061546
- Date Published:
- Journal Name:
- Journal of Experimental Botany
- Volume:
- 68
- Issue:
- 10
- ISSN:
- 0022-0957
- Page Range / eLocation ID:
- 2611-2625
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Excess reactive nitrogen (N) flows from agricultural, suburban, and urban systems to coasts, where it causes eutrophication. Coastal wetlands take up some of this N, thereby ameliorating the impacts on nearshore waters. Although the consequences of N on coastal wetlands have been extensively studied, the effect of the specific form of N is not often considered. Both oxidized N forms (nitrate, NO3−) and reduced forms (ammonium, NH4+) can relieve nutrient limitation and increase primary production. However, unlike NH4+, NO3− can also be used as an electron acceptor for microbial respiration. We present results demonstrating that, in salt marshes, microbes use NO3− to support organic matter decomposition and primary production is less stimulated than when enriched with reduced N. Understanding how different forms of N mediate the balance between primary production and decomposition is essential for managing coastal wetlands as N enrichment and sea level rise continue to assail our coasts.more » « less
-
Abstract. Elevated atmospheric CO2 concentration is expectedto increase leaf CO2 assimilation rates, thus promoting plant growthand increasing leaf area. It also decreases stomatal conductance, allowingwater savings, which have been hypothesized to drive large-scale greening,in particular in arid and semiarid climates. However, the increase in leafarea could reduce the benefits of elevated CO2 concentration through soilwater depletion. The net effect of elevated CO2 on leaf- andcanopy-level gas exchange remains uncertain. To address this question, wecompare the outcomes of a heuristic model based on the Partitioning ofEquilibrium Transpiration and Assimilation (PETA) hypothesis and three modelvariants based on stomatal optimization theory. Predicted relative changes in leaf-and canopy-level gas exchange rates are used as a metric of plant responsesto changes in atmospheric CO2 concentration. Both model approaches predictreductions in leaf-level transpiration rate due to decreased stomatalconductance under elevated CO2, but negligible (PETA) or no(optimization) changes in canopy-level transpiration due to the compensatoryeffect of increased leaf area. Leaf- and canopy-level CO2 assimilationis predicted to increase, with an amplification of the CO2fertilization effect at the canopy level due to the enhanced leaf area. Theexpected increase in vapour pressure deficit (VPD) under warmer conditions isgenerally predicted to decrease the sensitivity of gas exchange toatmospheric CO2 concentration in both models. The consistentpredictions by different models that canopy-level transpiration varieslittle under elevated CO2 due to combined stomatal conductancereduction and leaf area increase highlight the coordination ofphysiological and morphological characteristics in vegetation to maximizeresource use (here water) under altered climatic conditions.more » « less
-
Earth System Models (ESMs) have implemented nitrogen (N) cycles to account for N limitation on terrestrial carbon uptake. However, representing inputs, losses and recycling of N in ESMs is challenging. Here, we use global rates and ratios of key soil N fluxes, including nitrification, denitrification, mineralization, leaching, immobilization and plant uptake (both NH4+ and NO3-), from the literature to evaluate the N cycles in the land model components of two ESMs. The two land models evaluated here, ELMv1-ECA and CLM5.0, originated from a common model but have diverged in their representation of plant/microbe competition for soil N. The models predict similar global rates of gross primary productivity (GPP) but have ~2 to 3-fold differences in their underlying global mineralization, immobilization, plant N uptake, nitrification and denitrification fluxes. Both models dramatically underestimate the immobilization of NO3- by soil bacteria compared to literature values and predict dominance of plant uptake by a single form of mineral nitrogen (NO3- for ELM, with regional exceptions, and NH4+ for CLM5.0). CLM5.0 strongly underestimates the global ratio of gross nitrification:gross mineralization and both models likely substantially underestimate the ratio of nitrification:denitrification. Few experimental data exist to evaluate this last ratio, in part because nitrification and denitrification are quantified with different techniques and because denitrification fluxes are difficult to measure at all. More observational constraints on soil nitrogen fluxes like nitrification and denitrification, as well as greater scrutiny of the functional impact of introducing separate NH4+ and NO3- pools into ESMs, could help improve confidence in present and future simulations of N limitation on the carbon cycle.more » « less
-
Adams, Henry (Ed.)Abstract The ubiquity of woody plant expansion across many rangelands globally has led to the hypothesis that the global rise in atmospheric carbon dioxide concentration ([CO2]) is a global driver facilitating C3 woody plant expansion. Increasing [CO2] also influences precipitation patterns seasonally and across the landscape, which often results in the prevalence of drought in rangelands. To test the potential for [CO2] to facilitate woody plant growth, we conducted a greenhouse study for 150 days to measure CO2 effects on juveniles from four woody species (Cornus drummondii C.A. Mey., Rhus glabra L., Gleditsia triacanthos L., Juniperus osteosperma Torr.) that are actively expanding into rangelands of North America. We assessed chronic water-stress (nested within CO2 treatments) and its interaction with elevated [CO2] (800 p.p.m.) on plant growth physiology for 84 days. We measured leaf-level gas exchange, tissue-specific starch concentrations and biomass. We found that elevated [CO2] increased photosynthetic rates, intrinsic water-use efficiencies and leaf starch concentrations in all woody species but at different rates and concentrations. Elevated [CO2] increased leaf starch levels for C. drummondii, G. triacanthos, J. osteosperma and R. glabra by 90, 39, 68 and 41%, respectively. We also observed that elevated [CO2] ameliorated the physiological effects of chronic water stress for all our juvenile woody species within this study. Elevated [CO2] diminished the impact of water stress on the juvenile plants, potentially alleviating an abiotic limitation to woody plant establishment in rangelands, thus facilitating the expansion of woody plants in the future.more » « less
An official website of the United States government

