Abstract Changes in climate and land management over the last half‐century have favoured woody plants native to grasslands and led to the rapid expansion of woody species. Despite this being a global phenomenon, it is unclear why some woody species have rapidly expanded while others have not. We assessed whether the most abundant woody encroaching species in tallgrass prairie have common growth forms and physiology or unique traits that differentiate their resource‐use strategies.We characterized the abundance, above‐ground carbon allocation, and leaf‐level physiological and structural traits of seven woody encroaching species in tallgrass prairie that span an order of magnitude in abundance. To identify species‐specific increases in abundance, we used a 34‐year species composition dataset at Konza Prairie Biological Station (Central Great Plains, USA). We then compared biomass allocation and leaf‐level traits to determine differences in carbon and water use strategies among species.While all focal species increased in abundance over time, encroachment in this system is primarily driven by three species:Cornus drummondii,Prunus americanaandRhus glabra. The most dominant species,Cornus drummondii, had the most extreme values for several traits, including the lowest leaf:stem mass ratios, lowest photosynthetic capacity and highest turgor loss point.Two of the most abundant species,Cornus drummondiiandRhus glabra, had opposing growth forms and resource‐use strategies. These species had significantly different above‐ground carbon allocation, leaf‐level drought tolerance and photosynthetic capacity. There were surprisingly few interspecific differences in specific leaf area and leaf dry matter content, suggesting these traits were poor predictors of species‐level encroachment.Synthesis. Woody encroaching species in tallgrass prairie encompass a spectrum of growth forms and leaf physiology. Two of the most abundant woody species fell at opposite ends of this spectrum. Our results suggest niche differences among a community of woody species facilitate the rapid encroachment by a few species. This study shows that woody encroaching species do not conform to a ‘one‐size‐fits‐all’ strategy, and a diversity of growth forms and physiological strategies may make it more challenging to reach management goals that aim to conserve or restore grassland communities. 
                        more » 
                        « less   
                    
                            
                            Elevated CO2 counteracts effects of water stress on woody rangeland-encroaching species
                        
                    
    
            Abstract The ubiquity of woody plant expansion across many rangelands globally has led to the hypothesis that the global rise in atmospheric carbon dioxide concentration ([CO2]) is a global driver facilitating C3 woody plant expansion. Increasing [CO2] also influences precipitation patterns seasonally and across the landscape, which often results in the prevalence of drought in rangelands. To test the potential for [CO2] to facilitate woody plant growth, we conducted a greenhouse study for 150 days to measure CO2 effects on juveniles from four woody species (Cornus drummondii C.A. Mey., Rhus glabra L., Gleditsia triacanthos L., Juniperus osteosperma Torr.) that are actively expanding into rangelands of North America. We assessed chronic water-stress (nested within CO2 treatments) and its interaction with elevated [CO2] (800 p.p.m.) on plant growth physiology for 84 days. We measured leaf-level gas exchange, tissue-specific starch concentrations and biomass. We found that elevated [CO2] increased photosynthetic rates, intrinsic water-use efficiencies and leaf starch concentrations in all woody species but at different rates and concentrations. Elevated [CO2] increased leaf starch levels for C. drummondii, G. triacanthos, J. osteosperma and R. glabra by 90, 39, 68 and 41%, respectively. We also observed that elevated [CO2] ameliorated the physiological effects of chronic water stress for all our juvenile woody species within this study. Elevated [CO2] diminished the impact of water stress on the juvenile plants, potentially alleviating an abiotic limitation to woody plant establishment in rangelands, thus facilitating the expansion of woody plants in the future. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2025849
- PAR ID:
- 10468287
- Editor(s):
- Adams, Henry
- Publisher / Repository:
- Tree Physiology
- Date Published:
- Journal Name:
- Tree Physiology
- ISSN:
- 1758-4469
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Meinzer, Frederick (Ed.)Abstract In trees, large uncertainties remain in how nonstructural carbohydrates (NSCs) respond to variation in water availability in natural, intact ecosystems. Variation in NSC pools reflects temporal fluctuations in supply and demand, as well as physiological coordination across tree organs in ways that differ across species and NSC fractions (e.g., soluble sugars vs starch). Using landscape-scale crown (leaves and twigs) NSC concentration measurements in three foundation tree species (Populus tremuloides, Pinus edulis, Juniperus osteosperma), we evaluated in situ, seasonal variation in NSC responses to moisture stress on three timescales: short-term (via predawn water potential), seasonal (via leaf δ13C) and annual (via current year’s ring width index). Crown NSC responses to moisture stress appeared to depend on hydraulic strategy, where J. osteosperma appears to regulate osmotic potentials (via higher sugar concentrations), P. edulis NSC responses suggest respiratory depletion and P. tremuloides responses were consistent with direct sink limitations. We also show that overly simplistic models can mask seasonal and tissue variation in NSC responses, as well as strong interactions among moisture stress at different timescales. In general, our results suggest large seasonal variation in crown NSC concentrations reflecting the multiple cofunctions of NSCs in plant tissues, including storage, growth and osmotic regulation of hydraulically vulnerable leaves. We emphasize that crown NSC pool size cannot be viewed as a simple physiological metric of stress; in situ NSC dynamics are complex, varying temporally, across species, among NSC fractions and among tissue types.more » « less
- 
            Abstract Plants respond to increasing atmospheric CO2 concentrations by reducing leaf nitrogen content and photosynthetic capacity—patterns that correspond with increased net photosynthesis and growth. Despite the longstanding notion that nitrogen availability regulates these responses, eco-evolutionary optimality theory posits that leaf-level responses to elevated CO2 are driven by leaf nitrogen demand for building and maintaining photosynthetic enzymes and are independent of nitrogen availability. In this study, we examined leaf and whole-plant responses of Glycine max L. (Merr) subjected to full-factorial combinations of two CO2, two inoculation, and nine nitrogen fertilization treatments. Nitrogen fertilization and inoculation did not alter leaf photosynthetic responses to elevated CO2. Instead, elevated CO2 decreased the maximum rate of ribulose-1,5-bisophosphate oxygenase/carboxylase (Rubisco) carboxylation more strongly than it decreased the maximum rate of electron transport for ribulose-1,5-bisphosphate (RuBP) regeneration, increasing net photosynthesis by allowing rate-limiting steps to approach optimal coordination. Increasing fertilization enhanced positive whole-plant responses to elevated CO2 due to increased below-ground carbon allocation and nitrogen uptake. Inoculation with nitrogen-fixing bacteria did not influence plant responses to elevated CO2. These results reconcile the role of nitrogen availability in plant responses to elevated CO2, showing that leaf photosynthetic responses are regulated by leaf nitrogen demand while whole-plant responses are constrained by nitrogen availability.more » « less
- 
            Cavaleri, Molly (Ed.)Abstract Leaf trait variation enables plants to utilize large gradients of light availability that exist across canopies of high leaf area index (LAI), allowing for greater net carbon gain while reducing light availability for understory competitors. While these canopy dynamics are well understood in forest ecosystems, studies of canopy structure of woody shrubs in grasslands are lacking. To evaluate the investment strategy used by these shrubs, we investigated the vertical distribution of leaf traits and physiology across canopies of Cornus drummondii, the predominant woody encroaching shrub in the Kansas tallgrass prairie. We also examined the impact of disturbance by browsing and grazing on these factors. Our results reveal that leaf mass per area (LMA) and leaf nitrogen per area (Na) varied approximately threefold across canopies of C. drummondii, resulting in major differences in the physiological functioning of leaves. High LMA leaves had high photosynthetic capacity, while low LMA leaves had a novel strategy for maintaining light compensation points below ambient light levels. The vertical allocation of leaf traits in C. drummondii canopies was also modified in response to browsing, which increased light availability at deeper canopy depths. As a result, LMA and Na increased at lower canopy depths, leading to a greater photosynthetic capacity deeper in browsed canopies compared to control canopies. This response, along with increased light availability, facilitated greater photosynthesis and resource-use efficiency deeper in browsed canopies compared to control canopies. Our results illustrate how C. drummondii facilitates high LAI canopies and a compensatory growth response to browsing—both of which are key factors contributing to the success of C. drummondii and other species responsible for grassland woody encroachment.more » « less
- 
            Abstract Phytophthora cinnamomi, which causes the disease root rot, is an oomycete pathogen that is damaging to woody plants, including many horticulturally important groups, such as Rhododendron. Infecting the root of plants, Phytophthora cinnamomi inhibits water uptake, leading to root damage, wilting, and increased rates of plant mortality. Some observations suggest that P. cinnamomi infection corresponds to changes in leaf coloration, though whether this indicates a plant stress response or plant damage is generally unknown. We used leaf color analysis to test for differences in leaf discoloration between plants inoculated with the pathogen and control plants. We demonstrate a significant link between leaf discoloration in Rhododendron species and Phytophthora cinnamomi inoculation. This method was most useful when mortality was not exceptionally high, and analyzers must consider mortality as well as leaf damage in quantifying effects of the pathogen. Plants with leaf discoloration were 3.3 times more likely to die 2 weeks from our leaf census than plants with no leaf discoloration (P =0.005). This method is particularly inexpensive to implement, making it a valuable alternative to multi-spectral or hyperspectral imaging, especially in contexts such as horticulture and citizen science, where the high speed and low-cost nature of this technique might prove valuable. Species used in this study: root rot disease pathogen (Phytophthora cinnamomi Rands); Rhododendron atlanticum (Ashe) Rehder; Rhododendron brachycarpum D.Don ex G.Don; Rhododendron kiusianum Makino; Rhododendron maximum L.; Rhododendron minus Michx.; Rhododendron calendulaceum (Michx.) Torr.; Rhododendron kaempferi Planch.; Rhododendron keiskei Miq. Chemicals used in this study: Fosal Select Aliette/aluminum phosphite.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    