skip to main content


Title: Elevated CO2 counteracts effects of water stress on woody rangeland-encroaching species
Abstract

The ubiquity of woody plant expansion across many rangelands globally has led to the hypothesis that the global rise in atmospheric carbon dioxide concentration ([CO2]) is a global driver facilitating C3 woody plant expansion. Increasing [CO2] also influences precipitation patterns seasonally and across the landscape, which often results in the prevalence of drought in rangelands. To test the potential for [CO2] to facilitate woody plant growth, we conducted a greenhouse study for 150 days to measure CO2 effects on juveniles from four woody species (Cornus drummondii C.A. Mey., Rhus glabra L., Gleditsia triacanthos L., Juniperus osteosperma Torr.) that are actively expanding into rangelands of North America. We assessed chronic water-stress (nested within CO2 treatments) and its interaction with elevated [CO2] (800 p.p.m.) on plant growth physiology for 84 days. We measured leaf-level gas exchange, tissue-specific starch concentrations and biomass. We found that elevated [CO2] increased photosynthetic rates, intrinsic water-use efficiencies and leaf starch concentrations in all woody species but at different rates and concentrations. Elevated [CO2] increased leaf starch levels for C. drummondii, G. triacanthos, J. osteosperma and R. glabra by 90, 39, 68 and 41%, respectively. We also observed that elevated [CO2] ameliorated the physiological effects of chronic water stress for all our juvenile woody species within this study. Elevated [CO2] diminished the impact of water stress on the juvenile plants, potentially alleviating an abiotic limitation to woody plant establishment in rangelands, thus facilitating the expansion of woody plants in the future.

 
more » « less
Award ID(s):
2025849
NSF-PAR ID:
10468287
Author(s) / Creator(s):
; ; ;
Editor(s):
Adams, Henry
Publisher / Repository:
Tree Physiology
Date Published:
Journal Name:
Tree Physiology
ISSN:
1758-4469
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Meinzer, Frederick (Ed.)
    Abstract In trees, large uncertainties remain in how nonstructural carbohydrates (NSCs) respond to variation in water availability in natural, intact ecosystems. Variation in NSC pools reflects temporal fluctuations in supply and demand, as well as physiological coordination across tree organs in ways that differ across species and NSC fractions (e.g., soluble sugars vs starch). Using landscape-scale crown (leaves and twigs) NSC concentration measurements in three foundation tree species (Populus tremuloides, Pinus edulis, Juniperus osteosperma), we evaluated in situ, seasonal variation in NSC responses to moisture stress on three timescales: short-term (via predawn water potential), seasonal (via leaf δ13C) and annual (via current year’s ring width index). Crown NSC responses to moisture stress appeared to depend on hydraulic strategy, where J. osteosperma appears to regulate osmotic potentials (via higher sugar concentrations), P. edulis NSC responses suggest respiratory depletion and P. tremuloides responses were consistent with direct sink limitations. We also show that overly simplistic models can mask seasonal and tissue variation in NSC responses, as well as strong interactions among moisture stress at different timescales. In general, our results suggest large seasonal variation in crown NSC concentrations reflecting the multiple cofunctions of NSCs in plant tissues, including storage, growth and osmotic regulation of hydraulically vulnerable leaves. We emphasize that crown NSC pool size cannot be viewed as a simple physiological metric of stress; in situ NSC dynamics are complex, varying temporally, across species, among NSC fractions and among tissue types. 
    more » « less
  2. Abstract

    Riparian zones and the streams they border provide vital habitat for organisms, water quality protection, and other important ecosystem services. These areas are under pressure from local (land use/land cover change) to global (climate change) processes. Woody vegetation is expanding in grassland riparian zones worldwide. Here we report on a decade‐long watershed‐scale mechanical removal of woody riparian vegetation along 4.5 km of stream channel in a before–after control impact experiment. Prior to this removal, woody plants had expanded into grassy riparian areas, associated with a decline in streamflow, loss of grassy plant species, and other ecosystem‐scale impacts. We confirmed some expected responses, including rapid increases in stream nutrients and sediments, disappearance of stream mosses, and decreased organic inputs to streams via riparian leaves. We were surprised that nutrient and sediment increases were transient for 3 years, that there was no recovery of stream discharge, and that areas with woody removal did not shift back to a grassland state, even when reseeded with grassland species. Rapid expansion of shrubs (Cornus drummondii,Prunus americana) in the areas where trees were removed allowed woody vegetation to remain dominant despite repeating the cutting every 2 years. Our results suggest woody expansion can fundamentally alter terrestrial and aquatic habitat connections in grasslands, resulting in inexorable movement toward a new ecosystem state. Human pressures, such as climate change, atmospheric CO2increases, and elevated atmospheric nitrogen deposition, could continue to push the ecosystem along a trajectory that is difficult to change. Our results suggest that predicting relationships between riparian zones and the streams they border could be difficult in the face of global change in all biomes, even in well‐studied sites.

     
    more » « less
  3. Abstract

    North American grasslands have experienced increased relative abundance of shrubs and trees over the last 150 yr. Alterations in herbivore composition, abundance, and grazing pressure along with changes in fire frequency are drivers that can regulate the transition from grassland to shrubland or woodland (a process known as woody encroachment). Historically, North American grasslands had a suite of large herbivores that grazed and/or browsed (i.e., bison, elk, pronghorn, deer), as well as frequent and intense fires. In the tallgrass prairie, many large native ungulates were extirpated by the 1860s, corresponding with increased homesteading (which led to decreased fire frequencies and intensities). Changes in the frequency and intensity of these two drivers (browsing and fire) have coincided with woody encroachment in tallgrass prairie. Within tallgrass prairie, woody encroachment can be categorized in to two groups: non‐resprouting species that can be killed with fire and resprouting species that cannot be killed with fire. Resprouting species require additional active management strategies to decrease abundance and eventually be removed from the ecosystem. In this study, we investigated plant cover, ramet density, and physiological effects of continuous simulated browsing and prescribed fire onCornus drummondiiC.A. Mey, a resprouting clonal native shrub species. Browsing reducedC. drummondiicanopy cover and increased grass cover. We also observed decreased ramet density, which allowed for more infilling of grasses. Photosynthetic rates between browsed and unbrowsed control shrubs did not increase in 2015 or 2016. In 2017, photosynthetic rates for browsed shrubs were higher in the unburned site than the unbrowsed control shrubs at the end of the growing season. Additionally, after the prescribed fire, browsed shrubs had ~90% decreased cover, ~50% reduced ramet density, and grass cover increased by ~80%. In the roots of browsed shrubs after the prescribed fire, nonstructural carbohydrates (NSC) experienced a twofold reduction in glucose and a threefold reduction in both sucrose and starch. The combined effects of browsing and fire show strong potential as a successful management tool to decrease the abundance of clonal‐resprouting woody plants in mesic grasslands and illustrate the potential significance of browsers as a key driver in this ecosystem.

     
    more » « less
  4. Abstract

    Nonstructural carbohydrates (NSCs) are carbon compounds that serve a large variety of purposes, which makes it hard to disentangle how their concentrations change in response to environmental stress. Soluble sugars can accumulate in plants as metabolic demand decreases, e.g., in response to drought or as seasonal temperatures decrease. Alternatively, actively allocating to NSCs could be beneficial in cold acclimation (CA) or in periods of increased aridity because soluble sugars serve non-metabolic functions as cryoprotectants and in osmoregulation. We used Juniperus virginiana L., a woody plant currently expanding its range, to investigate whether plants sourced from colder and more arid locations maintained higher concentrations of NSCs. We sourced three populations of J. virginiana from across an environmental gradient, and we compared these with the closely related Juniperus scopulorum Sarg. We grew the plants in a common garden in north-east OH, part of J. virginiana’s historic range. We exposed the plants to a drought treatment during the summer and then measured the NSC concentrations and cold-hardiness as the plants acclimated to colder temperatures and shorter days. We found that individuals originating from the warmer, more southern range edge were initially not as cold-hardy as plants from the other source populations and that they only reached similar hardiness after prolonged low temperatures. We did not find an effect of drought on NSCs, although this may be due to other traits conferring a high level of drought tolerance in J. virginiana. Across all plants, the NSC concentration increased over the CA period, specifically as sugars. Although the highest concentrations of sugars were found in plants from southern populations, the plants from colder environments maintained higher sugar-to-starch ratios. These results highlight the importance of NSCs in CA and that plants sourced from different climates showed different physiological responses to shortening days and low temperatures.

     
    more » « less
  5. Abstract

    Nearly every terrestrial ecosystem hosts invasive ant species, and many of those ant species construct underground nests near roots and/or tend phloem‐feeding hemipterans on plants. We have a limited understanding of how these invasive ant behaviours change photosynthesis, carbohydrate availability and growth of woody plants.

    We measured photosynthesis, water relations, carbohydrate concentrations and growth for screenhouse‐rearedAcacia drepanolobiumsaplings on which we had manipulated invasivePheidole megacephalaants and nativeCeroplastessp. hemipterans to determine whether and how soil nesting and hemipteran tending by ants affect plant carbon dynamics. In a field study, we also compared leaf counts of vertebrate herbivore‐excluded and ‐exposed saplings in invaded and non‐invaded savannas to examine how ant invasion and vertebrate herbivory are associated with differences in sapling photosynthetic crown size.

    Though hemipteran infestations are often linked to declines in plant performance, our screenhouse experiment did not find an association between hemipteran presence and differences in plant physiology. However, we did find that soil nesting byP. megacephalaaround screenhouse plants was associated with >58% lower whole‐crown photosynthesis, >31% lower pre‐dawn leaf water potential, >29% lower sucrose concentrations in woody tissues and >29% smaller leaf areas. In the field, sapling crowns were 29% smaller in invaded savannas than in non‐invaded savannas, mimicking screenhouse results.

    Synthesis. We demonstrate that soil nesting near roots, a common behaviour byPheidole megacephalaand other invasive ants, can directly reduce carbon fixation and storage ofAcacia drepanolobiumsaplings. This mechanism is distinct from the disruption of a native ant mutualism byP. megacephala, which causes similar large declines in carbon fixation for matureA. drepanolobiumtrees.Acacia drepanolobiumalready has extremely low natural rates of recruitment from the sapling to mature stage, and we infer that these negative effects of invasion on saplings potentially curtail recruitment and reduce population growth in invaded areas. Our results suggest that direct interactions between invasive ants and plant roots in other ecosystems may strongly influence plant carbon fixation and storage.

     
    more » « less