skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Not All Nitrogen Is Created Equal: Differential Effects of Nitrate and Ammonium Enrichment in Coastal Wetlands
Abstract Excess reactive nitrogen (N) flows from agricultural, suburban, and urban systems to coasts, where it causes eutrophication. Coastal wetlands take up some of this N, thereby ameliorating the impacts on nearshore waters. Although the consequences of N on coastal wetlands have been extensively studied, the effect of the specific form of N is not often considered. Both oxidized N forms (nitrate, NO3−) and reduced forms (ammonium, NH4+) can relieve nutrient limitation and increase primary production. However, unlike NH4+, NO3− can also be used as an electron acceptor for microbial respiration. We present results demonstrating that, in salt marshes, microbes use NO3− to support organic matter decomposition and primary production is less stimulated than when enriched with reduced N. Understanding how different forms of N mediate the balance between primary production and decomposition is essential for managing coastal wetlands as N enrichment and sea level rise continue to assail our coasts.  more » « less
Award ID(s):
1902704 1902712 1637630 1902695
PAR ID:
10225103
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
BioScience
Volume:
70
Issue:
12
ISSN:
0006-3568
Page Range / eLocation ID:
1108 to 1119
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Critical for predicting the future of primary productivity is a better understanding of plant responses to rising atmospheric carbon dioxide (CO2) concentration. This review considers recent results on the role of the inorganic nitrogen (N) forms nitrate (NO3–) and ammonium (NH4+) in determining the responses of wheat and Arabidopsis to elevated atmospheric CO2 concentration. Here, we identify four key issues: (i) the possibility that different plant species respond similarly to elevated CO2 if one accounts for the N form that they are using; (ii) the major influence that plant–soil N interactions have on plant responses to elevated CO2; (iii) the observation that elevated CO2 may favor the uptake of one N form over others; and (iv) the finding that plants receiving NH4+ nutrition respond more positively to elevated CO2 than those receiving NO3– nutrition because elevated CO2 inhibits the assimilation of NO3– in shoots of C3 plants. We conclude that the form and amount of N available to plants from the rhizosphere and plant preferences for the different N forms are essential for predicting plant responses to elevated CO2. 
    more » « less
  2. Abstract Nitrogen (N) is a limiting nutrient in vast regions of the world’s oceans, yet the sources of N available to various phytoplankton groups remain poorly understood. In this study, we investigated inorganic carbon (C) fixation rates and nitrate (NO3−), ammonium (NH4+) and urea uptake rates at the single cell level in photosynthetic pico-eukaryotes (PPE) and the cyanobacteria Prochlorococcus and Synechococcus. To that end, we used dual 15N and 13C-labeled incubation assays coupled to flow cytometry cell sorting and nanoSIMS analysis on samples collected in the North Pacific Subtropical Gyre (NPSG) and in the California Current System (CCS). Based on these analyses, we found that photosynthetic growth rates (based on C fixation) of PPE were higher in the CCS than in the NSPG, while the opposite was observed for Prochlorococcus. Reduced forms of N (NH4+ and urea) accounted for the majority of N acquisition for all the groups studied. NO3− represented a reduced fraction of total N uptake in all groups but was higher in PPE (17.4 ± 11.2% on average) than in Prochlorococcus and Synechococcus (4.5 ± 6.5 and 2.9 ± 2.1% on average, respectively). This may in part explain the contrasting biogeography of these picoplankton groups. Moreover, single cell analyses reveal that cell-to-cell heterogeneity within picoplankton groups was significantly greater for NO3− uptake than for C fixation and NH4+ uptake. We hypothesize that cellular heterogeneity in NO3− uptake within groups facilitates adaptation to the fluctuating availability of NO3− in the environment. 
    more » « less
  3. Earth System Models (ESMs) have implemented nitrogen (N) cycles to account for N limitation on terrestrial carbon uptake. However, representing inputs, losses and recycling of N in ESMs is challenging. Here, we use global rates and ratios of key soil N fluxes, including nitrification, denitrification, mineralization, leaching, immobilization and plant uptake (both NH4+ and NO3-), from the literature to evaluate the N cycles in the land model components of two ESMs. The two land models evaluated here, ELMv1-ECA and CLM5.0, originated from a common model but have diverged in their representation of plant/microbe competition for soil N. The models predict similar global rates of gross primary productivity (GPP) but have ~2 to 3-fold differences in their underlying global mineralization, immobilization, plant N uptake, nitrification and denitrification fluxes. Both models dramatically underestimate the immobilization of NO3- by soil bacteria compared to literature values and predict dominance of plant uptake by a single form of mineral nitrogen (NO3- for ELM, with regional exceptions, and NH4+ for CLM5.0). CLM5.0 strongly underestimates the global ratio of gross nitrification:gross mineralization and both models likely substantially underestimate the ratio of nitrification:denitrification. Few experimental data exist to evaluate this last ratio, in part because nitrification and denitrification are quantified with different techniques and because denitrification fluxes are difficult to measure at all. More observational constraints on soil nitrogen fluxes like nitrification and denitrification, as well as greater scrutiny of the functional impact of introducing separate NH4+ and NO3- pools into ESMs, could help improve confidence in present and future simulations of N limitation on the carbon cycle. 
    more » « less
  4. The nitrogen cycle plays a key role biological, energy, environment, and industrial processes. Breaking natural nitrogen cycle is leading to accumulation of reactive nitrogen chemicals in water and atmosphere, therefore, better management of N-cycle has emerged as an urgent research need in energy and environmental science. Removing excessive nitrate (NO3−) from wastewater has increasingly become an important research topic in light of the growing concerns over the related environmental problems and health issues. In particular, catalytic/electrocatalytic approaches are attractive for NO3− removal, because NO3− from wastewater can be converted to N2 and released back to the atmosphere using renewable H2 or electricity, closing the loop of the global N cycle. However, achieving high product selectivity towards the desirable N2 has proven challenging in the direct NO3−-to-N2 reaction. In this presentation, we will report our finding on unique and ultra-high electrochemical NO3−-to-NO2−activity on an oxide-derived silver electrode (OD-Ag). Up to 98% selectivity and 95% faradaic efficiency of NO2− were observed and maintained under a wide potential window. Benefiting from overcoming the rate-determining barrier of NO3−-to-NO2−during nitrate reduction, further reduction of accumulated NO2− to NH4+ can be well regulated by the cathodic potential on OD-Ag to achieve a faradaic efficiency of 89%. These indicated the potential controllable pathway to the key nitrate reduction products (NO2−or NH4+) on OD-Ag. DFT computations provided insights into the unique NO2−selectivity on Ag electrodes compared with Cu, showing the critical role of a proton-assisted mechanism. Based on the ultra-high NO3−-to-NO2−activity on OD-Ag, we designed a novel electrocatalytic-catalytic combined process for denitrifying real-world NO3−-containing agricultural wastewater, leading to 95+% of NO3− conversion to N2 with minimal NOx gases. Importantly, NO2− derived from nitrate may serve as a crucial reactive platform for distributed production of various nitrogen products, such as NO, NH2OH, NH3, and urea. 
    more » « less
  5. Removing excessive nitrate (NO3−) from wastewater has increasingly become an important research topic in light of the growing concerns over the related environmental problems and health issues. In particular, catalytic/electrocatalytic approaches are attractive for NO3− removal, because NO3− from wastewater can be converted to N2 and released back to the atmosphere using renewable H2 or electricity, closing the loop of the global N cycle. However, achieving high product selectivity towards the desirable N2 has proven challenging in the direct NO3−-to-N2 reaction. In this presentation, we will report our finding on unique and ultra-high electrochemical NO3−-to-NO2−activity on an oxide-derived silver electrode (OD-Ag). Up to 98% selectivity and 95% faradaic efficiency of NO2− were observed and maintained under a wide potential window. Benefiting from overcoming the rate-determining barrier of NO3−-to-NO2−during nitrate reduction, further reduction of accumulated NO2− to NH4+ can be well regulated by the cathodic potential on OD-Ag to achieve a faradaic efficiency of 89%. These indicated the potential controllable pathway to the key nitrate reduction products (NO2−or NH4+) on OD-Ag. DFT computations provided insights into the unique NO2−selectivity on Ag electrodes compared with Cu, showing the critical role of a proton-assisted mechanism. Based on the ultra-high NO3−-to-NO2−activity on OD-Ag, we designed a novel electrocatalytic-catalytic combined process for denitrifying real-world NO3−-containing agricultural wastewater, leading to 95+% of NO3− conversion to N2 with minimal NOX gases. In addition to the wastewater treatment process to N2 and electrochemical synthesis of NH3, NO2− derived from electrocatalytic NO3− conversion can serve as a reactive platform for distributed production of various nitrogen products. Our new research progress along this direction will be briefly presented. 
    more » « less