skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Strategy for signal classification to improve data quality for Advanced Detectors gravitational-wave searches
Noise of non-astrophysical origin contaminates science data taken by the Advanced Laser Interferometer Gravitational-wave Observatory and Advanced Virgo gravitational-wave detectors. Characterization of instrumental and environmental noise transients has proven critical in identifying false positives in the first aLIGO observing run O1. In this talk, we present three algorithms designed for the automatic classification of non-astrophysical transients in advanced detectors. Principal Component Analysis for Transients (PCAT) and an adaptation of LALInference Burst (PC-LIB) are based on Principal Component Analysis. The third algorithm is a combination of a glitch finder called Wavelet Detection Filter (WDF) and unsupervised machine learning techniques for classification.  more » « less
Award ID(s):
1707668
PAR ID:
10061620
Author(s) / Creator(s):
 
Date Published:
Journal Name:
Proceedings, 11th Workshop on Science with the New generation of High Energy Gamma-ray Experiments (SciNeGHE 2016) : Pisa, Italy, October 18-21, 2016
Volume:
Nuovo Cim. C40
Issue:
3
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Based on the prior O1–O2 observing runs, about 30% of the data collected by Advanced LIGO and Virgo in the next observing runs are expected to be single-interferometer data, i.e. they will be collected at times when only one detector in the network is operating in observing mode. Searches for gravitational-wave signals from supernova events do not rely on matched filtering techniques because of the stochastic nature of the signals. If a Galactic supernova occurs during single-interferometer times, separation of its unmodelled gravitational-wave signal from noise will be even more difficult due to lack of coherence between detectors. We present a novel machine learning method to perform single-interferometer supernova searches based on the standard LIGO-Virgo coherent WaveBurst pipeline. We show that the method may be used to discriminate Galactic gravitational-wave supernova signals from noise transients, decrease the false alarm rate of the search, and improve the supernova detection reach of the detectors. 
    more » « less
  2. Ground-based gravitational-wave (GW) detectors are a frontier large-scale experiment in experimental astrophysics. Given the elusive nature of GWs, the ground-based detectors have complex interacting systems made up of exquisitely sensitive instruments which makes them susceptible to terrestrial noise sources. As these noise transients - termed as glitches - appear in the detector's main data channel, they can mask or mimic real GW signals resulting in false alarms in the detection pipelines. Given their high rate of occurrence compared to astrophysical signals, it is vital to examine these glitches and probe their origin in the detector's environment and instruments in order to possibly eliminate them from the science data. In this paper we present a tensor factorization-based data mining approach to finding witness events to these glitches in the network of heterogeneous sensors that monitor the detectors and build a catalog which can aid human operators in diagnosing the sources of these noise transients. Available from: https://openreview.net/forum?id=O9q0ma6Oh5e 
    more » « less
  3. Abstract We present a new method, based on fractal analysis, to characterize the output of a physical detector that is in the form of a set of real-valued, discrete physical measurements. We apply the method to gravitational-wave data from the latest observing run of the Laser Interferometer Gravitational-wave Observatory. We show that a measure of the fractal dimension of the main detector output (strain channel) can be used to determine the instrument status, test data stationarity, and identify non-astrophysical excess noise in low latency. When applied to instrument control and environmental data (auxiliary channels) the fractal dimension can be used to identify the origins of noise transients, non-linear couplings in the various detector subsystems, and provide a means to flag stretches of low-quality data. 
    more » « less
  4. ABSTRACT Magnetar vibrational modes are theorized to be associated with energetic X-ray flares. Regular searches for gravitational waves from these modes have been performed by Advanced LIGO (Laser Interferometer Gravitational-wave Observatory) and Advanced Virgo, with no detections so far. Presently, search results are given in upper limits on the root sum square of the integrated gravitational-wave strain. However, the increased sensitivity of current detectors and the promise of future detectors invite the consideration of more astrophysically motivated methods. We present a framework for augmenting gravitational-wave searches to measure or place direct limits on magnetar astrophysical properties in various search scenarios using a set of phenomenological and analytical models. 
    more » « less
  5. Abstract The extreme sensitivity required for direct observation of gravitational waves by the Advanced LIGO detectors means that environmental noise is increasingly likely to contaminate Advanced LIGO gravitational wave signals if left unaddressed. Consequently, environmental monitoring efforts have been undertaken and novel noise mitigation techniques have been developed which have reduced environmental coupling and made it possible to analyze environmental artifacts with potential to affect the 90 gravitational wave events detected from 2015–2020 by the Advanced LIGO detectors. So far, there is no evidence for environmental contamination in gravitational wave detections. However, automated, rapid ways to monitor and assess the degree of environmental coupling between gravitational wave detectors and their surroundings are needed as the rate of detections continues to increase. We introduce a computational tool,PEMcheck, for quantifying the degree of environmental coupling present in gravitational wave signals using data from the extant collection of environmental monitoring sensors at each detector. We study its performance when applied to 79 gravitational waves detected in LIGO’s third observing run and test its performance in the case of extreme environmental contamination of gravitational wave data. We find thatPEMcheck’s automated analysis identifies only a small number of gravitational waves that merit further study by environmental noise experts due to possible contamination, a substantial improvement over the manual vetting that occurred for every gravitational wave candidate in the first two observing runs. Building on a first attempt at automating environmental coupling assessments used in the third observing run, this tool represents an improvement in accuracy and interpretability of coupling assessments, reducing the time needed to validate gravitational wave candidates. With the validation provided herein;PEMcheckwill play a critical role in event validation during LIGO’s fourth observing run as an integral part of the data quality report produced for each gravitational wave candidate. 
    more » « less