Title: Automated evaluation of environmental coupling for Advanced LIGO gravitational wave detections
Abstract The extreme sensitivity required for direct observation of gravitational waves by the Advanced LIGO detectors means that environmental noise is increasingly likely to contaminate Advanced LIGO gravitational wave signals if left unaddressed. Consequently, environmental monitoring efforts have been undertaken and novel noise mitigation techniques have been developed which have reduced environmental coupling and made it possible to analyze environmental artifacts with potential to affect the 90 gravitational wave events detected from 2015–2020 by the Advanced LIGO detectors. So far, there is no evidence for environmental contamination in gravitational wave detections. However, automated, rapid ways to monitor and assess the degree of environmental coupling between gravitational wave detectors and their surroundings are needed as the rate of detections continues to increase. We introduce a computational tool,PEMcheck, for quantifying the degree of environmental coupling present in gravitational wave signals using data from the extant collection of environmental monitoring sensors at each detector. We study its performance when applied to 79 gravitational waves detected in LIGO’s third observing run and test its performance in the case of extreme environmental contamination of gravitational wave data. We find thatPEMcheck’s automated analysis identifies only a small number of gravitational waves that merit further study by environmental noise experts due to possible contamination, a substantial improvement over the manual vetting that occurred for every gravitational wave candidate in the first two observing runs. Building on a first attempt at automating environmental coupling assessments used in the third observing run, this tool represents an improvement in accuracy and interpretability of coupling assessments, reducing the time needed to validate gravitational wave candidates. With the validation provided herein;PEMcheckwill play a critical role in event validation during LIGO’s fourth observing run as an integral part of the data quality report produced for each gravitational wave candidate. more »« less
The advanced LIGO gravitational wave detectors need high power laser sources with excellent beam quality and low-noise behavior. We present a pre-stabilized laser system with 70 W of output power that was used in the third observing run of the advanced LIGO detectors. Furthermore, the prototype of a 140 W pre-stabilized laser system for future use in the LIGO observatories is described and characterized.
Abbasi, R.; Ackermann, M.; Adams, J.; Aggarwal, N.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Alameddine, J. M.; Alves, A. A.; Amin, N. M.; et al
(, The Astrophysical Journal)
Abstract Using data from the IceCube Neutrino Observatory, we searched for high-energy neutrino emission from the gravitational-wave events detected by the advanced LIGO and Virgo detectors during their third observing run. We did a low-latency follow-up on the public candidate events released during the detectors’ third observing run and an archival search on the 80 confident events reported in the GWTC-2.1 and GWTC-3 catalogs. An extended search was also conducted for neutrino emission on longer timescales from neutron star containing mergers. Follow-up searches on the candidate optical counterpart of GW190521 were also conducted. We used two methods; an unbinned maximum likelihood analysis and a Bayesian analysis using astrophysical priors, both of which were previously used to search for high-energy neutrino emission from gravitational-wave events. No significant neutrino emission was observed by any analysis, and upper limits were placed on the time-integrated neutrino flux as well as the total isotropic equivalent energy emitted in high-energy neutrinos.
S Soni, C Austin
(, Classical and quantum gravity)
null
(Ed.)
Noise due to scattered light has been a frequent disturbance in the advanced LIGO gravitational wave detectors, hindering the detection of gravitational waves. The non stationary scatter noise caused by low frequency motion can be recognized as arches in the time-frequency plane of the gravitational wave channel. In this paper, we characterize the scattering noise for LIGO and Virgo's third observing run O3 from April, 2019 to March, 2020. We find at least two different populations of scattering noise and we investigate the multiple origins of one of them as well as its mitigation. We find that relative motion between two specific surfaces is strongly correlated with the presence of scattered light and we implement a technique to reduce this motion. We also present an algorithm using a witness channel to identify the times this noise can be present in the detector.
Glanzer, J.; Banagiri, S.; Coughlin, S. B.; Soni, S.; Zevin, M.; Berry, C. P. L.; Patane, O.; Bahaadini, S.; Rohani, N.; Crowston, K.; et al
(, Classical and Quantum Gravity)
Abstract Understanding the noise in gravitational-wave detectors is central to detecting and interpreting gravitational-wave signals. Glitches are transient, non-Gaussian noise features that can have a range of environmental and instrumental origins. The Gravity Spy project uses a machine-learning algorithm to classify glitches based upon their time–frequency morphology. The resulting set of classified glitches can be used as input to detector-characterisation investigations of how to mitigate glitches, or data-analysis studies of how to ameliorate the impact of glitches. Here we present the results of the Gravity Spy analysis of data up to the end of the third observing run of advanced laser interferometric gravitational-wave observatory (LIGO). We classify 233981 glitches from LIGO Hanford and 379805 glitches from LIGO Livingston into morphological classes. We find that the distribution of glitches differs between the two LIGO sites. This highlights the potential need for studies of data quality to be individually tailored to each gravitational-wave observatory.
Coughlin, Michael W; Antier, Sarah; Corre, David; Alqassimi, Khalid; Anand, Shreya; Christensen, Nelson; Coulter, David A; Foley, Ryan J; Guessoum, Nidhal; Mikulski, Timothy M; et al
(, Monthly Notices of the Royal Astronomical Society)
ABSTRACT The ever-increasing sensitivity of the network of gravitational-wave detectors has resulted in the accelerated rate of detections from compact binary coalescence systems in the third observing run of Advanced LIGO and Advanced Virgo. Not only has the event rate increased, but also the distances to which phenomena can be detected, leading to a rise in the required sky volume coverage to search for counterparts. Additionally, the improvement of the detectors has resulted in the discovery of more compact binary mergers involving neutron stars, revitalizing dedicated follow-up campaigns. While significant effort has been made by the community to optimize single telescope observations, using both synoptic and galaxy-targeting methods, less effort has been paid to coordinated observations in a network. This is becoming crucial, as the advent of gravitational-wave astronomy has garnered interest around the globe, resulting in abundant networks of telescopes available to search for counterparts. In this paper, we extend some of the techniques developed for single telescopes to a telescope network. We describe simple modifications to these algorithms and demonstrate them on existing network examples. These algorithms are implemented in the open-source software gwemopt, used by some follow-up teams, for ease of use by the broader community.
Helmling-Cornell, A_F, Nguyen, P., Schofield, R_M_S, and Frey, R.
"Automated evaluation of environmental coupling for Advanced LIGO gravitational wave detections". Classical and Quantum Gravity 41 (14). Country unknown/Code not available: IOP Publishing. https://doi.org/10.1088/1361-6382/ad5139.https://par.nsf.gov/biblio/10516230.
@article{osti_10516230,
place = {Country unknown/Code not available},
title = {Automated evaluation of environmental coupling for Advanced LIGO gravitational wave detections},
url = {https://par.nsf.gov/biblio/10516230},
DOI = {10.1088/1361-6382/ad5139},
abstractNote = {Abstract The extreme sensitivity required for direct observation of gravitational waves by the Advanced LIGO detectors means that environmental noise is increasingly likely to contaminate Advanced LIGO gravitational wave signals if left unaddressed. Consequently, environmental monitoring efforts have been undertaken and novel noise mitigation techniques have been developed which have reduced environmental coupling and made it possible to analyze environmental artifacts with potential to affect the 90 gravitational wave events detected from 2015–2020 by the Advanced LIGO detectors. So far, there is no evidence for environmental contamination in gravitational wave detections. However, automated, rapid ways to monitor and assess the degree of environmental coupling between gravitational wave detectors and their surroundings are needed as the rate of detections continues to increase. We introduce a computational tool,PEMcheck, for quantifying the degree of environmental coupling present in gravitational wave signals using data from the extant collection of environmental monitoring sensors at each detector. We study its performance when applied to 79 gravitational waves detected in LIGO’s third observing run and test its performance in the case of extreme environmental contamination of gravitational wave data. We find thatPEMcheck’s automated analysis identifies only a small number of gravitational waves that merit further study by environmental noise experts due to possible contamination, a substantial improvement over the manual vetting that occurred for every gravitational wave candidate in the first two observing runs. Building on a first attempt at automating environmental coupling assessments used in the third observing run, this tool represents an improvement in accuracy and interpretability of coupling assessments, reducing the time needed to validate gravitational wave candidates. With the validation provided herein;PEMcheckwill play a critical role in event validation during LIGO’s fourth observing run as an integral part of the data quality report produced for each gravitational wave candidate.},
journal = {Classical and Quantum Gravity},
volume = {41},
number = {14},
publisher = {IOP Publishing},
author = {Helmling-Cornell, A_F and Nguyen, P. and Schofield, R_M_S and Frey, R.},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.