skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Density Functional Theory (DFT) Study To Unravel the Catalytic Properties of M-Exchanged MFI, (M = Be, Co, Cu, Mg, Mn, Zn) for the Conversion of Methane and Carbon Dioxide to Acetic Acid
Award ID(s):
1632824
PAR ID:
10061757
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ACS Catalysis
Volume:
7
Issue:
10
ISSN:
2155-5435
Page Range / eLocation ID:
6719 to 6728
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Of the almost 40 star-forming galaxies at z≳ 5 (not counting quasi-stellar objects) observed in [{{C}} {{II}}] to date, nearly half are either very faint in [{{C}} {{II}}] or not detected at all, and fall well below expectations based on locally derived relations between star formation rate and [{{C}} {{II}}] luminosity. This has raised questions as to how reliable [{{C}} {{II}}] is as a tracer of star formation activity at these epochs and how factors such as metallicity might affect the [{{C}} {{II}}] emission. Combining cosmological zoom simulations of galaxies with SÍGAME (SImulator of GAlaxy Millimeter/submillimeter Emission), we modeled the multiphased interstellar medium (ISM) and its emission in [{{C}} {{II}}], as well as in [O I] and [O III], from 30 main-sequence galaxies at z≃ 6 with star formation rates ˜3-23 {M}⊙ {yr}}-1, stellar masses ˜ (0.7{--}8)× {10}9 {M}⊙ , and metallicities ˜ (0.1{--}0.4)× {Z}⊙ . The simulations are able to reproduce the aforementioned [{{C}} {{II}}] faintness of some normal star-forming galaxy sources at z≥slant 5. In terms of [O I] and [O III], very few observations are available at z≳ 5, but our simulations match two of the three existing z≳ 5 detections of [O III] and are furthermore roughly consistent with the [O I] and [O III] luminosity relations with star formation rate observed for local starburst galaxies. We find that the [{{C}} {{II}}] emission is dominated by the diffuse ionized gas phase and molecular clouds, which on average contribute ˜66% and ˜27%, respectively. The molecular gas, which constitutes only ˜ 10 % of the total gas mass, is thus a more efficient emitter of [{{C}} {{II}}] than the ionized gas, which makes up ˜85% of the total gas mass. A principal component analysis shows that the [{{C}} {{II}}] luminosity correlates with the star formation activity of a galaxy as well as its average metallicity. The low metallicities of our simulations together with their low molecular gas mass fractions can account for their [{{C}} {{II}}] faintness, and we suggest that these factors may also be responsible for the [{{C}} {{II}}]-faint normal galaxies observed at these early epochs. 
    more » « less
  2. Capacity management, whether it involves servers in a data center, or human staff in a call center, or doctors in a hospital, is largely about balancing a resource-delay tradeoff. On the one hand, one would like to turn off servers when not in use (or send home staff that are idle) to save on resources. On the other hand, one wants to avoid the considerable setup time required to turn an ''off'' server back ''on.'' This paper aims to understand the delay component of this tradeoff, namely, what is the effect of setup time on average delay in a multi-server system? Surprisingly little is known about the effect of setup times on delay. While there has been some work on studying the M/M/k with Exponentially-distributed setup times, these works provide only iterative methods for computing mean delay, giving little insight as to how delay is affected by k , by load, and by the setup time. Furthermore, setup time in practice is much better modeled by a Deterministic random variable, and, as this paper shows, the scaling effect of a Deterministic setup time is nothing like that of an Exponentially-distributed setup time. This paper provides the first analysis of the M/M/k with Deterministic setup times. We prove a lower bound on the effect of setup on delay, where our bound is highly accurate for the common case where the setup time is much higher than the job service time. Our result is a relatively simple algebraic formula which provides insights on how delay scales with the input parameters. Our proof uses a combination of renewal theory, martingale arguments and novel probabilistic arguments, providing strong intuition on the transient behavior of a system that turns servers on and off. 
    more » « less
  3. Abstract About 70%–80% of stars in our solar and Galactic neighborhood are M dwarfs. They span a range of low masses and temperatures relative to solar-type stars, facilitating molecule formation throughout their atmospheres. Standard stellar atmosphere models primarily designed for FGK stars face challenges when characterizing broadband molecular features in spectra of cool stars. Here, we introduce SPHINX —a new 1D self-consistent radiative–convective thermochemical equilibrium chemistry model grid of atmospheres and spectra for M dwarfs in low resolution ( R ∼ 250). We incorporate the latest precomputed absorption cross sections with pressure broadening for key molecules dominant in late-K, early/main-sequence-M stars. We then validate our grid models by determining fundamental properties ( T eff , log g , [M/H], radius, and C/O) for 10 benchmark M+G binary stars with known host metallicities and 10 M dwarfs with interferometrically measured angular diameters. Incorporating the Gaussian process inference tool Starfish , we account for correlated and systematic noise in low-resolution (spectral stitching of SpeX, SNIFS, and STIS) observations and derive robust estimates of fundamental M-dwarf atmospheric parameters. Additionally, we assess the influence of photospheric heterogeneity on inferred [M/H] and find that it could explain some deviations from observations. We also probe whether the adopted convective mixing length parameter influences inferred radii, effective temperature, and [M/H] and again find that may explain discrepancies between interferometric observations and model-derived parameters for cooler M dwarfs. Mainly, we show the unique strength in leveraging broadband molecular absorption features occurring in low-resolution M dwarf spectra and demonstrate the ability to improve constraints on fundamental properties of exoplanet hosts and brown-dwarf companions. 
    more » « less
  4. ABSTRACT In the synthesis of metallic nanocrystals (NCs) using a high-temperature colloidal approach, the competition between deposition and diffusion of “free atom (or clusters)” plays an important role as it can direct the morphology of NCs during their evolution. This competition is closely associated with some dynamic conditions such as heat and mass transfer. Stirring speed and ramp rate of heating are two factors that greatly impact the heat and mass transfer processes and consequently determine the morphology of the products but rarely discussed in most synthetic protocols. Herein, we study the syntheses of Pt-M (M = Ni, Fe) NCs as model reactions, showing that a low stirring speed and high ramp rate of heating result in ununiform pod-like NCs, whereas the inverse conditions promote NCs in a uniform shape. This observation can be plausibly explained using a competition mechanism between the deposition and diffusion of the newly reduced atoms during a stage of the NC’s growth. 
    more » « less