Abstract Investigating the conditions behind the formation of pyroclast textures and lava flow morphologies is important to understand the dynamics of submarine volcanic eruptions, which are hard to observe. The development of clast textures and lava morphologies depends on the competing effects of their eruption rates and the rates of solidification. While eruption rates are governed by subsurface magmatic processes, the solidification timescales depend on the rate of heat loss from lava to the external water. However, the effect of the speed of lava flow or clast on their solidification timescales under two‐phase (liquid water and vapor bubbles) water boiling conditions is poorly constrained. Using laboratory experiments with remelted igneous rocks, we investigate the effect of the relative motion between lava and external water on its cooling timescale. We use a range of water speed (0–12.5 cm s−1) in our experiments while keeping our sample stationary to simulate a range of relative speed between lava and ambient water. Using transient heat transfer modeling, we find that heat flux from the surface of the sample to the external water overall increases with increasing water speed. We find heat transfer coefficients of up to ∼1.72 × 103 W m−2 K−1. The implications of high heat flux on the formation of solid lava crust under submarine conditions are discussed.
more »
« less
The Effects of Dynamic Transformation on the Formation of Pt-M (M = Ni, Fe) Nanocrystals
ABSTRACT In the synthesis of metallic nanocrystals (NCs) using a high-temperature colloidal approach, the competition between deposition and diffusion of “free atom (or clusters)” plays an important role as it can direct the morphology of NCs during their evolution. This competition is closely associated with some dynamic conditions such as heat and mass transfer. Stirring speed and ramp rate of heating are two factors that greatly impact the heat and mass transfer processes and consequently determine the morphology of the products but rarely discussed in most synthetic protocols. Herein, we study the syntheses of Pt-M (M = Ni, Fe) NCs as model reactions, showing that a low stirring speed and high ramp rate of heating result in ununiform pod-like NCs, whereas the inverse conditions promote NCs in a uniform shape. This observation can be plausibly explained using a competition mechanism between the deposition and diffusion of the newly reduced atoms during a stage of the NC’s growth.
more »
« less
- Award ID(s):
- 1808383
- PAR ID:
- 10100224
- Date Published:
- Journal Name:
- MRS Advances
- Volume:
- 4
- Issue:
- 24
- ISSN:
- 2059-8521
- Page Range / eLocation ID:
- 1377 to 1382
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT For droplet vaporization on a superheated hydrophilic surface, earlier studies have demonstrated that use of machine learning tools to analyze both image information from high-speed video and digital data from sensors can be an effective path to understanding the physics and developing a useful model to predict performance when the surface superheat is at low to moderate levels. For such conditions, the two-phase morphology of the system is usually well-behaved, exhibiting conduction-dominated film evaporation of the spread droplet, or nucleate boiling at active nucleation sites in the liquid film of the spread droplet. At higher surface superheat levels, experiments have shown that the droplet vaporization process becomes chaotic, with the process alternating between rapid vaporization of liquid in contact with the surface and ejection of liquid off the surface by strong vapor recoil forces. For our experiments with water droplets at atmospheric pressure, this regime corresponds to superheat levels ranging from about 35 to 55 deg. C. At the low superheat end of this regime, extremely high mean heat flux levels are achieved, but as superheat further increases, less of the surface stays wetted due to the increasing vapor recoil forces, and heat flux begins to decrease as the boiling process becomes like transition pool boiling with progressively less of the surface in contact with liquid. This exploration of the use of a specialized convolution neural network (CNN) to simultaneously analyze high speed video images and digital data for this high-superheat, near-critical-heat-flux regime of droplet vaporization is of special interest for two reasons. First, this vaporization regime results in high heat flux levels that make it attractive for high heat flux cooling for high-powered electronics. Use of machine learning tools to learn more about the mechanisms of this vaporization regime may open the door to new high flux thermal management technologies. In addition, because of its complexity, the two-phase morphology of the vaporization process in this regime is expected to be a very challenging task for CNN machine learning tools. In this study we conducted deposited water droplet spreading and vaporization experiments that captured digital data input (measured surface superheat, mean heat flux during the vaporization process, wetting contact angle, droplet size, etc.) and images of the droplet vaporization two-phase morphology from high-speed video during each experiment. This paper summarizes our successful development of a specialized hybrid CNN design that is trained using the combination of digital measurements and images obtained in our experiments. This CNN design provides deep insight into correlation between the two-phase morphology and heat transfer performance for this near critical heat flux vaporization regime. It also provides a pathway to a heat transfer performance model that fits the performance data to a high level of agreement. Using data collected from the droplet deposition experiment, this network design has been trained to predict the mean heat flux with a root mean square percent error of only about 2.0% and 8.0% on a training and testing dataset respectively. The hybrid network developed in this research appears to be a promising strategy for analyzing experimental data for physical systems with complex morphology that are best investigated experimentally with a combined use of imaging and digital sensor instrumentation.more » « less
-
McCartney, J.S.; Tomac, I. (Ed.)Storing and extracting heat during different seasons of the year is possible through the utilization of a ground aquifer with an open loop Ground Source Heat Pump (GSHP) system. Being able to predict the hydrothermal performance of geothermal storage is required for an efficient operation of the system for cooling and heating of buildings. Complex 2D and 3D hydrothermal numerical models can simulate the thermal performance of geothermal storage accurately but often lack the desired computational speed for conducting large number of simulations for performance optimization. Instead, a 1D radial model can be used to conduct fast evaluation. However, it is important that the model computes the amount of heat loss from an aquifer into the overburden and underlying layers accurately to evaluate the amount of geothermal storage in the aquifer at different times. In this study, a source term is introduced into a 1D model to simulate the heat transfer between the aquifer and caprock/baserock in the vertical direction. The following two heat loss models are introduced in the heat advection-conduction equation: (i) Newton’s heating/cooling law, which leads to a closed form solution, and (ii) a conduction-based semi-analytical model, which requires a 1D finite element solution. When compared to a full 2D axisymmetric simulation result, it was found that the Newton’s heating/cooling law model with a constant heat transfer coefficient works well in cases of fast heat flow rate in thick aquifers of around 100 meters. But large errors in estimating heat dissipation are observed in cases with low heat flow rate in thin aquifers, especially for simulations exceeding two to five years. On the other hand, the model with the conduction-based semi-analytical solution gives a better match for these conditions.more » « less
-
Abstract The quenching “maintenance” and “cooling flow” problems are important from the Milky Way through massive cluster elliptical galaxies. Previous work has shown that some source of energy beyond that from stars and pure magnetohydrodynamic processes is required, perhaps from AGN, but even the qualitative form of this energetic input remains uncertain. Different scenarios include thermal “heating,” direct wind or momentum injection, cosmic ray heating or pressure support, or turbulent “stirring” of the intra-cluster medium (ICM). We investigate these in 1012 − 1014 M⊙ halos using high-resolution non-cosmological simulations with the FIRE-2 (Feedback In Realistic Environments) stellar feedback model, including simplified toy energy-injection models, where we arbitrarily vary the strength, injection scale, and physical form of the energy. We explore which scenarios can quench without violating observational constraints on energetics or ICM gas. We show that turbulent stirring in the central ∼100 kpc, or cosmic-ray injection, can both maintain a stable low-SFR halo for >Gyr timescales with modest energy input, by providing a non-thermal pressure which stably lowers the core density and cooling rates. In both cases, associated thermal-heating processes are negligible. Turbulent stirring preserves cool-core features while mixing condensed core gas into the hotter halo and is by far the most energy efficient model. Pure thermal heating or nuclear isotropic momentum injection require vastly larger energy, are less efficient in lower-mass halos, easily over-heat cores, and require fine-tuning to avoid driving unphysical temperature gradients or gas expulsion from the halo center.more » « less
-
ABSTRACT The binary star Par 1802 in the Orion Nebula presents an interesting puzzle in the field of stellar dynamics and evolution. Binary systems such as Par 1802 are thought to form from the same natal material and thus the stellar members are expected to have very similar physical attributes. However, Par 1802’s stars have significantly different temperatures despite their identical (within $$3\, {\rm per\, cent}$$) masses of about 0.39 M⊙. The leading proof-of-concept idea is that a third companion gravitationally induced the two stars to orbit closer than their Roche limit, which facilitated heating through tidal effects. Here we expand on this idea and study the three-body dynamical evolution of such a system, including tidal and pre-main-sequence evolution. We also include tidal heating and mass transfer at the onset of Roche limit crossing. We show, as a proof-of-concept, that mass transfer combined with tidal heating can naturally explain the observed temperature discrepancy. We also predict the orbital configuration of the possible tertiary companion. Finally, we suggest that the dynamical evolution of such a system has pervasive consequences. We expect an abundance of systems to undergo mass transfer during their pre-main-sequence time, which can cause temperature differences.more » « less
An official website of the United States government

