skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Effects of Dynamic Transformation on the Formation of Pt-M (M = Ni, Fe) Nanocrystals
ABSTRACT In the synthesis of metallic nanocrystals (NCs) using a high-temperature colloidal approach, the competition between deposition and diffusion of “free atom (or clusters)” plays an important role as it can direct the morphology of NCs during their evolution. This competition is closely associated with some dynamic conditions such as heat and mass transfer. Stirring speed and ramp rate of heating are two factors that greatly impact the heat and mass transfer processes and consequently determine the morphology of the products but rarely discussed in most synthetic protocols. Herein, we study the syntheses of Pt-M (M = Ni, Fe) NCs as model reactions, showing that a low stirring speed and high ramp rate of heating result in ununiform pod-like NCs, whereas the inverse conditions promote NCs in a uniform shape. This observation can be plausibly explained using a competition mechanism between the deposition and diffusion of the newly reduced atoms during a stage of the NC’s growth.  more » « less
Award ID(s):
1808383
PAR ID:
10100224
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
MRS Advances
Volume:
4
Issue:
24
ISSN:
2059-8521
Page Range / eLocation ID:
1377 to 1382
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Investigating the conditions behind the formation of pyroclast textures and lava flow morphologies is important to understand the dynamics of submarine volcanic eruptions, which are hard to observe. The development of clast textures and lava morphologies depends on the competing effects of their eruption rates and the rates of solidification. While eruption rates are governed by subsurface magmatic processes, the solidification timescales depend on the rate of heat loss from lava to the external water. However, the effect of the speed of lava flow or clast on their solidification timescales under two‐phase (liquid water and vapor bubbles) water boiling conditions is poorly constrained. Using laboratory experiments with remelted igneous rocks, we investigate the effect of the relative motion between lava and external water on its cooling timescale. We use a range of water speed (0–12.5 cm s−1) in our experiments while keeping our sample stationary to simulate a range of relative speed between lava and ambient water. Using transient heat transfer modeling, we find that heat flux from the surface of the sample to the external water overall increases with increasing water speed. We find heat transfer coefficients of up to ∼1.72 × 103 W m−2 K−1. The implications of high heat flux on the formation of solid lava crust under submarine conditions are discussed. 
    more » « less
  2. McCartney, J.S.; Tomac, I. (Ed.)
    Storing and extracting heat during different seasons of the year is possible through the utilization of a ground aquifer with an open loop Ground Source Heat Pump (GSHP) system. Being able to predict the hydrothermal performance of geothermal storage is required for an efficient operation of the system for cooling and heating of buildings. Complex 2D and 3D hydrothermal numerical models can simulate the thermal performance of geothermal storage accurately but often lack the desired computational speed for conducting large number of simulations for performance optimization. Instead, a 1D radial model can be used to conduct fast evaluation. However, it is important that the model computes the amount of heat loss from an aquifer into the overburden and underlying layers accurately to evaluate the amount of geothermal storage in the aquifer at different times. In this study, a source term is introduced into a 1D model to simulate the heat transfer between the aquifer and caprock/baserock in the vertical direction. The following two heat loss models are introduced in the heat advection-conduction equation: (i) Newton’s heating/cooling law, which leads to a closed form solution, and (ii) a conduction-based semi-analytical model, which requires a 1D finite element solution. When compared to a full 2D axisymmetric simulation result, it was found that the Newton’s heating/cooling law model with a constant heat transfer coefficient works well in cases of fast heat flow rate in thick aquifers of around 100 meters. But large errors in estimating heat dissipation are observed in cases with low heat flow rate in thin aquifers, especially for simulations exceeding two to five years. On the other hand, the model with the conduction-based semi-analytical solution gives a better match for these conditions. 
    more » « less
  3. Abstract The quenching “maintenance” and “cooling flow” problems are important from the Milky Way through massive cluster elliptical galaxies. Previous work has shown that some source of energy beyond that from stars and pure magnetohydrodynamic processes is required, perhaps from AGN, but even the qualitative form of this energetic input remains uncertain. Different scenarios include thermal “heating,” direct wind or momentum injection, cosmic ray heating or pressure support, or turbulent “stirring” of the intra-cluster medium (ICM). We investigate these in 1012 − 1014 M⊙ halos using high-resolution non-cosmological simulations with the FIRE-2 (Feedback In Realistic Environments) stellar feedback model, including simplified toy energy-injection models, where we arbitrarily vary the strength, injection scale, and physical form of the energy. We explore which scenarios can quench without violating observational constraints on energetics or ICM gas. We show that turbulent stirring in the central ∼100 kpc, or cosmic-ray injection, can both maintain a stable low-SFR halo for >Gyr timescales with modest energy input, by providing a non-thermal pressure which stably lowers the core density and cooling rates. In both cases, associated thermal-heating processes are negligible. Turbulent stirring preserves cool-core features while mixing condensed core gas into the hotter halo and is by far the most energy efficient model. Pure thermal heating or nuclear isotropic momentum injection require vastly larger energy, are less efficient in lower-mass halos, easily over-heat cores, and require fine-tuning to avoid driving unphysical temperature gradients or gas expulsion from the halo center. 
    more » « less
  4. ABSTRACT The binary star Par 1802 in the Orion Nebula presents an interesting puzzle in the field of stellar dynamics and evolution. Binary systems such as Par 1802 are thought to form from the same natal material and thus the stellar members are expected to have very similar physical attributes. However, Par 1802’s stars have significantly different temperatures despite their identical (within $$3\, {\rm per\, cent}$$) masses of about 0.39 M⊙. The leading proof-of-concept idea is that a third companion gravitationally induced the two stars to orbit closer than their Roche limit, which facilitated heating through tidal effects. Here we expand on this idea and study the three-body dynamical evolution of such a system, including tidal and pre-main-sequence evolution. We also include tidal heating and mass transfer at the onset of Roche limit crossing. We show, as a proof-of-concept, that mass transfer combined with tidal heating can naturally explain the observed temperature discrepancy. We also predict the orbital configuration of the possible tertiary companion. Finally, we suggest that the dynamical evolution of such a system has pervasive consequences. We expect an abundance of systems to undergo mass transfer during their pre-main-sequence time, which can cause temperature differences. 
    more » « less
  5. Induction heating is one of the cleanest and most efficient methods for heating materials, utilizing electromagnetic fields induced through AC electric current. This article reports an analytical solution for transient heat transfer in a three‐dimensional (3D) cylindrical object under induction heating. A simplified form of Maxwell's equations is solved to determine the heat generation inside the cylinder by calculating the current density distribution within the body. The temperature within the solid is found from the solution of the unsteady heat equation based on Green's function. Owing to multiple spatial dimensions and time, a separation of variables technique is used to find Green's function. In addition, an innovative algorithm is proposed to take care of the variable material properties in analytical treatment. The analytical solution for temperature is verified with the data obtained from experiments for identical operating conditions. The analytical solution is used to study the impact of heat transfer coefficient and input AC current frequency and amplitude during transient heat diffusion. Our analytical solution suggests that the temperature‐dependent material properties significantly affect the thermal response within the solid. Unlike many other conventional heating methods, the thermal boundary condition changes with time in induction heating, which makes our solution much more challenging. 
    more » « less