Adaptive gradient methods, such as AdaGrad, are among the most successful optimization algorithms for neural network training. While these methods are known to achieve better dimensional dependence than stochastic gradient descent (SGD) for stochastic convex optimization under favorable geometry, the theoretical justification for their success in stochastic non-convex optimization remains elusive. In fact, under standard assumptions of Lipschitz gradients and bounded noise variance, it is known that SGD is worst-case optimal in terms of finding a near-stationary point with respect to the l2-norm, making further improvements impossible. Motivated by this limitation, we introduce refined assumptions on the smoothness structure of the objective and the gradient noise variance, which better suit the coordinate-wise nature of adaptive gradient methods. Moreover, we adopt the l1-norm of the gradient as the stationarity measure, as opposed to the standard l2-norm, to align with the coordinate-wise analysis and obtain tighter convergence guarantees for AdaGrad. Under these new assumptions and the l1-norm stationarity measure, we establish an upper bound on the convergence rate of AdaGrad and a corresponding lower bound for SGD. In particular, we identify non-convex settings in which the iteration complexity of AdaGrad is favorable over SGD and show that, for certain configurations of problem parameters, it outperforms SGD by a factor of d, where d is the problem dimension. To the best of our knowledge, this is the first result to demonstrate a provable gain of adaptive gradient methods over SGD in a non-convex setting. We also present supporting lower bounds, including one specific to AdaGrad and one applicable to general deterministic first-order methods, showing that our upper bound for AdaGrad is tight and unimprovable up to a logarithmic factor under certain conditions.
more »
« less
On the insufficiency of existing momentum schemes for Stochastic Optimization
Momentum based stochastic gradient methods such as heavy ball (HB) and Nesterov's accelerated gradient descent (NAG) method are widely used in practice for training deep networks and other supervised learning models, as they often provide significant improvements over stochastic gradient descent (SGD). Rigorously speaking, fast gradient methods have provable improvements over gradient descent only for the deterministic case, where the gradients are exact. In the stochastic case, the popular explanations for their wide applicability is that when these fast gradient methods are applied in the stochastic case, they partially mimic their exact gradient counterparts, resulting in some practical gain. This work provides a counterpoint to this belief by proving that there exist simple problem instances where these methods cannot outperform SGD despite the best setting of its parameters. These negative problem instances are, in an informal sense, generic; they do not look like carefully constructed pathological instances. These results suggest (along with empirical evidence) that HB or NAG's practical performance gains are a by-product of minibatching. Furthermore, this work provides a viable (and provable) alternative, which, on the same set of problem instances, significantly improves over HB, NAG, and SGD's performance. This algorithm, referred to as Accelerated Stochastic Gradient Descent (ASGD), is a simple to implement stochastic algorithm, based on a relatively less popular variant of Nesterov's Acceleration. Extensive empirical results in this paper show that ASGD has performance gains over HB, NAG, and SGD. The code for implementing the ASGD Algorithm can be found at https://github.com/rahulkidambi/AccSGD.
more »
« less
- Award ID(s):
- 1703574
- PAR ID:
- 10061992
- Date Published:
- Journal Name:
- International Conference on Learning Representations
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study the performance of noisy gradient descent and Nesterov's accelerated methods for strongly convex objective functions with Lipschitz continuous gradients. The steady-state second-order moment of the error in the iterates is analyzed when the gradient is perturbed by an additive white noise with zero mean and identity covariance. For any given condition number κ, we derive explicit upper bounds on noise amplification that only depend on κ and the problem size. We use quadratic objective functions to derive lower bounds and to demonstrate that the upper bounds are tight up to a constant factor. The established upper bound for Nesterov's accelerated method is larger than the upper bound for gradient descent by a factor of √κ. This gap identifies a fundamental tradeoff that comes with acceleration in the presence of stochastic uncertainties in the gradient evaluation.more » « less
-
Parameter-free stochastic gradient descent (PFSGD) algorithms do not require setting learning rates while achieving optimal theoretical performance. In practical applications, however, there remains an empirical gap between tuned stochastic gradient descent (SGD) and PFSGD. In this paper, we close the empirical gap with a new parameter-free algorithm based on continuous-time Coin-Betting on truncated models. The new update is derived through the solution of an Ordinary Differential Equation (ODE) and solved in a closed form. We show empirically that this new parameter-free algorithm outperforms algorithms with the "best default" learning rates and almost matches the performance of finely tuned baselines without anything to tune.more » « less
-
This work characterizes the benefits of averaging techniques widely used in conjunction with stochastic gradient descent (SGD). In particular, this work presents a sharp analysis of: (1) mini- batching, a method of averaging many samples of a stochastic gradient to both reduce the variance of a stochastic gradient estimate and for parallelizing SGD and (2) tail-averaging, a method involving averaging the final few iterates of SGD in order to decrease the variance in SGD’s final iterate. This work presents sharp finite sample generalization error bounds for these schemes for the stochastic approximation problem of least squares regression. Furthermore, this work establishes a precise problem-dependent extent to which mini-batching can be used to yield provable near-linear parallelization speedups over SGD with batch size one. This characterization is used to understand the relationship between learning rate versus batch size when considering the excess risk of the final iterate of an SGD procedure. Next, this mini-batching characterization is utilized in providing a highly parallelizable SGD method that achieves the min- imax risk with nearly the same number of serial updates as batch gradient descent, improving significantly over existing SGD-style methods. Following this, a non-asymptotic excess risk bound for model averaging (which is a communication efficient parallelization scheme) is provided. Finally, this work sheds light on fundamental differences in SGD’s behavior when dealing with mis-specified models in the non-realizable least squares problem. This paper shows that maximal stepsizes ensuring minimax risk for the mis-specified case must depend on the noise properties. The analysis tools used by this paper generalize the operator view of averaged SGD (De ́fossez and Bach, 2015) followed by developing a novel analysis in bounding these operators to char- acterize the generalization error. These techniques are of broader interest in analyzing various computational aspects of stochastic approximation.more » « less
-
Momentum methods such as Polyak's heavy ball (HB) method, Nesterov's accelerated gradient (AG) as well as accelerated projected gradient (APG) method have been commonly used in machine learning practice, but their performance is quite sensitive to noise in the gradients. We study these methods under a first-order stochastic oracle model where noisy estimates of the gradients are available. For strongly convex problems, we show that the distribution of the iterates of AG converges with the accelerated linear rate to a ball of radius " centered at a unique invariant distribution in the 1-Wasserstein metric where is the condition number as long as the noise variance is smaller than an explicit upper bound we can provide. Our analysis also certifies linear convergence rates as a function of the stepsize, momentum parameter and the noise variance; recovering the accelerated rates in the noiseless case and quantifying the level of noise that can be tolerated to achieve a given performance. To the best of our knowledge, these are the first linear convergence results for stochastic momentum methods under the stochastic oracle model. We also develop finer results for the special case of quadratic objectives, extend our results to the APG method and weakly convex functions showing accelerated rates when the noise magnitude is sufficiently small.more » « less
An official website of the United States government

