skip to main content


Title: Better Parameter-free Stochastic Optimization with ODE Updates for Coin-Betting
Parameter-free stochastic gradient descent (PFSGD) algorithms do not require setting learning rates while achieving optimal theoretical performance. In practical applications, however, there remains an empirical gap between tuned stochastic gradient descent (SGD) and PFSGD. In this paper, we close the empirical gap with a new parameter-free algorithm based on continuous-time Coin-Betting on truncated models. The new update is derived through the solution of an Ordinary Differential Equation (ODE) and solved in a closed form. We show empirically that this new parameter-free algorithm outperforms algorithms with the "best default" learning rates and almost matches the performance of finely tuned baselines without anything to tune.  more » « less
Award ID(s):
2046096 1908111 1925930
PAR ID:
10310893
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
ISSN:
2374-3468
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deep learning methods achieve state-of-the-art performance in many application scenarios. Yet, these methods require a significant amount of hyperparameters tuning in order to achieve the best results. In particular, tuning the learning rates in the stochastic optimization process is still one of the main bottlenecks. In this paper, we propose a new stochastic gradient descent procedure for deep networks that does not require any learning rate setting. Contrary to previous methods, we do not adapt the learning rates nor we make use of the assumed curvature of the objective function. Instead, we reduce the optimization process to a game of betting on a coin and propose a learning rate free optimal algorithm for this scenario. Theoretical convergence is proven for convex and quasi-convex functions and empirical evidence shows the advantage of our algorithm over popular stochastic gradient algorithms. 
    more » « less
  2. Stochastic Gradient Descent (SGD) has played a central role in machine learning. However, it requires a carefully hand-picked stepsize for fast convergence, which is notoriously tedious and time-consuming to tune. Over the last several years, a plethora of adaptive gradient-based algorithms have emerged to ameliorate this problem. In this paper, we propose new surrogate losses to cast the problem of learning the optimal stepsizes for the stochastic optimization of a non-convex smooth objective function onto an online convex optimization problem. This allows the use of no-regret online algorithms to compute optimal stepsizes on the fly. In turn, this results in a SGD algorithm with self-tuned stepsizes that guarantees convergence rates that are automatically adaptive to the level of noise. 
    more » « less
  3. Dasgupta, Sanjoy ; Haghtalab, Nika (Ed.)
    Parameter-free algorithms are online learning algorithms that do not require setting learning rates. They achieve optimal regret with respect to the distance between the initial point and any competitor. Yet, parameter-free algorithms do not take into account the geometry of the losses. Recently, in the stochastic optimization literature, it has been proposed to instead use truncated linear lower bounds, which produce better performance by more closely modeling the losses. In particular, truncated linear models greatly reduce the problem of overshooting the minimum of the loss function. Unfortunately, truncated linear models cannot be used with parameter-free algorithms because the updates become very expensive to compute. In this paper, we propose new parameter-free algorithms that can take advantage of truncated linear models through a new update that has an “implicit” flavor. Based on a novel decomposition of the regret, the new update is efficient, requires only one gradient at each step, never overshoots the minimum of the truncated model, and retains the favorable parameter-free properties. We also conduct an empirical study demonstrating the practical utility of our algorithms. 
    more » « less
  4. Wallach, H. ; Larochelle, H. ; Beygelzimer, A. ; d'Alché-Buc, F. ; Fox, E. ; Garnett, R. (Ed.)
    Variance reduction has emerged in recent years as a strong competitor to stochastic gradient descent in non-convex problems, providing the first algorithms to improve upon the converge rate of stochastic gradient descent for finding first-order critical points. However, variance reduction techniques typically require carefully tuned learning rates and willingness to use excessively large "mega-batches" in order to achieve their improved results. We present a new algorithm, STORM, that does not require any batches and makes use of adaptive learning rates, enabling simpler implementation and less hyperparameter tuning. Our technique for removing the batches uses a variant of momentum to achieve variance reduction in non-convex optimization. On smooth losses $F$, STORM finds a point $\boldsymbol{x}$ with $E[\|\nabla F(\boldsymbol{x})\|]\le O(1/\sqrt{T}+\sigma^{1/3}/T^{1/3})$ in $T$ iterations with $\sigma^2$ variance in the gradients, matching the optimal rate and without requiring knowledge of $\sigma$. 
    more » « less
  5. Momentum based stochastic gradient methods such as heavy ball (HB) and Nesterov's accelerated gradient descent (NAG) method are widely used in practice for training deep networks and other supervised learning models, as they often provide significant improvements over stochastic gradient descent (SGD). Rigorously speaking, fast gradient methods have provable improvements over gradient descent only for the deterministic case, where the gradients are exact. In the stochastic case, the popular explanations for their wide applicability is that when these fast gradient methods are applied in the stochastic case, they partially mimic their exact gradient counterparts, resulting in some practical gain. This work provides a counterpoint to this belief by proving that there exist simple problem instances where these methods cannot outperform SGD despite the best setting of its parameters. These negative problem instances are, in an informal sense, generic; they do not look like carefully constructed pathological instances. These results suggest (along with empirical evidence) that HB or NAG's practical performance gains are a by-product of minibatching. Furthermore, this work provides a viable (and provable) alternative, which, on the same set of problem instances, significantly improves over HB, NAG, and SGD's performance. This algorithm, referred to as Accelerated Stochastic Gradient Descent (ASGD), is a simple to implement stochastic algorithm, based on a relatively less popular variant of Nesterov's Acceleration. Extensive empirical results in this paper show that ASGD has performance gains over HB, NAG, and SGD. The code for implementing the ASGD Algorithm can be found at https://github.com/rahulkidambi/AccSGD. 
    more » « less