skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bistable and Reconfigurable Photonic Crystals—Electroactive Shape Memory Polymer Nanocomposite for Ink‐Free Rewritable Paper
Abstract Paper has remained the world's most‐widely accessible information medium even as sustainable and reusable paper replacements have attracted increasing attention. Here, an ink‐free rewritable paper concept is developed that combines recent developments in photonic crystals, shape memory polymers, and electroactive polymers in a nanocomposite that matches the benefits of paper as a zero‐energy, long‐term data storage medium, but provides the additional advantage of rewritability. The rewritable paper consists of a ferroferric oxide‐carbon (Fe3O4@C) core–shell nanoparticle (NP)‐based photonic crystal embedded in a bistable electroactive polymer (BSEP). Electrical actuation induces large deformation in the z‐axis of the nanocomposite, creating distinct color change in the actuated area. This nanocomposite stores high fidelity color images without inks, the images remain stable after more than a year of storage in ambient conditions, and the stored images can then be rewritten over 500 times without degrading. A seven‐segment numerical display is also demonstrated.  more » « less
Award ID(s):
1638163
PAR ID:
10062007
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
28
Issue:
34
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Phase change materials (PCMs) have long been used as a storage medium in rewritable compact disk and later in random access memory. In recent years, integration of PCMs with nanophotonic structures has introduced a new paradigm for non‐volatile reconfigurable optics. However, the high loss of the archetypal PCM Ge2Sb2Te5in both visible and telecommunication wavelengths has fundamentally limited its applications. Sb2S3has recently emerged as a wide‐bandgap PCM with transparency windows ranging from 610 nm to near‐IR. In this paper, the strong optical phase modulation and low optical loss of Sb2S3are experimentally demonstrated for the first time in integrated photonic platforms at both 750 and 1550 nm. As opposed to silicon, the thermo‐optic coefficient of Sb2S3is shown to be negative, making the Sb2S3–Si hybrid platform less sensitive to thermal fluctuation. Finally, a Sb2S3integrated non‐volatile microring switch is demonstrated which can be tuned electrically between a high and low transmission state with a contrast over 30 dB. This work experimentally verifies prominent phase modification and low loss of Sb2S3in wavelength ranges relevant for both solid‐state quantum emitter and telecommunication, enabling potential applications such as optical field programmable gate array, post‐fabrication trimming, and large‐scale integrated quantum photonic network. 
    more » « less
  2. Photonic integrated circuits (PICs) with rapid prototyping and reprogramming capabilities promise revolutionary impacts on a plethora of photonic technologies. We report direct-write and rewritable photonic circuits on a low-loss phase-change material (PCM) thin film. Complete end-to-end PICs are directly laser-written in one step without additional fabrication processes, and any part of the circuit can be erased and rewritten, facilitating rapid design modification. We demonstrate the versatility of this technique for diverse applications, including an optical interconnect fabric for reconfigurable networking, a photonic crossbar array for optical computing, and a tunable optical filter for optical signal processing. By combining the programmability of the direct laser writing technique with PCM, our technique unlocks opportunities for programmable photonic networking, computing, and signal processing. Moreover, the rewritable photonic circuits enable rapid prototyping and testing in a convenient and cost-efficient manner, eliminate the need for nanofabrication facilities, and thus promote the proliferation of photonics research and education to a broader community. 
    more » « less
  3. Abstract Functional polymers with sulfobetaine or phosphorylcholine zwitterions as pendent groups are demonstrated as both ligands and host matrices for CsPbBr3perovskite nanoparticles (PNPs). These polymers produce nanocomposite films with excellent NP dispersion, optical transparency, and impressive resistance to NP degradation upon exposure to water. Multidentate interactions of the zwitterion‐containing copolymers with the PNPs induce dispersed or weakly aggregated nanocomposite morphologies, depending on the extent of zwitterionic functionality in the polymer. Incorporating additional functionality into the polymers, such as benzophenone pendent groups, yields lithographically patternable films, while time‐resolved photoluminescence measurements provide insight into the electronic impact of PNPs in zwitterionic polymer matrices. 
    more » « less
  4. Abstract Color morphing refers to color change in response to an environmental stimulus. Photochromic materials allow color morphing in response to light, but almost all photochromic materials suffer from degradation when exposed to moist/humid environments or harsh chemical environments. One way of overcoming this challenge is by imparting chemical shielding to the color morphing materials via superomniphobicity. However, simultaneously imparting color morphing and superomniphobicity, both surface properties, requires a rational design. In this work, we systematically design color morphing surfaces with superomniphobicity through an appropriate combination of a photochromic dye, a low surface energy material, and a polymer in a suitable solvent (for one-pot synthesis), applied through spray coating (for the desired texture). We also investigate the influence of polymer polarity and material composition on color morphing kinetics and superomniphobicity. Our color morphing surfaces with effective chemical shielding can be designed with a wide variety of photochromic and thermochromic pigments and applied on a wide variety of substrates. We envision that such surfaces will have a wide range of applications including camouflage soldier fabrics/apparel for chem-bio warfare, color morphing soft robots, rewritable color patterns, optical data storage, and ophthalmic sun screening. 
    more » « less
  5. Abstract The high transmission speed of optical signals and their application in optical computation have created a growing demand for photon‐programmed memory devices. Rather than using electrical pulses to store data in one of two states, the photomemory (PM) devices exploit the optical stimulation to store the light information. In this work, the application of a nonvolatile rewritable PM array using the photochromic inorganic perovskite CsPbIBr2grown by a vapor‐deposition process is demonstrated. Reversible phase transitions between orthorhombic (δ) and cubic (α) phases are achieved in CsPbIBr2films through laser‐induced heat and moisture exposure. The PM pixels in an optically absorbing perovskite phase exhibit ≈50‐fold photoresponsivity as large as those in a transparent‐colored non‐perovskite phase. Storing optical data are achieved by heating pixels through a near‐infrared laser, while moisture exposure is used to erase the stored information. The nonvolatile PM array exhibits great write‐read‐erase cycle endurance and data retention capability without obvious performance degradation after storage in air for one week. This work demonstrates the promising application of vapor‐deposited inorganic perovskite for optical information storage and the unique potential of them for use in optical switches, tunable metasurfaces, and many other applications. 
    more » « less