Most studies on electrowetting (EW) involve the use of AC electric fields, which cause droplets to oscillate in response to the sinusoidal waveform. Oscillation-driven mixing in droplets is the basis for multiple microfluidic applications. Presently, we study the voltage and AC frequency-dependent oscillations of electrowetted water droplets on a smooth, hydrophobic surface. We introduce a new approach towards analyzing droplet oscillations, which involves characterization of the oscillation amplitude of the contact angle (CA). An experimentally validated, fundamentals-based model to predict voltage and frequency-dependent CA oscillations is developed, which is analogous to the Lippmann’s equation for predicting voltage-dependent CAs. Itmore »
Electrowetting-based microfluidic operations on rapid- manufactured devices for heat pipe applications
The heat transport capacity of traditional heat pipes is limited by the capillary pressure generated in the internal wick that pumps condensate to the evaporator. Recently, the authors conceptualized a novel heat pipe architecture, wherein wick-based pumping is replaced by electrowetting (EW)-based pumping of microliter droplets in the adiabatic section. An electrowetting heat pipe (EHP) can overcome the capillary limit to heat transport capacity and enable compact, planar, gravity-insensitive, and ultralow power consumption heat pipes that transport kiloWatt heat loads over extended distances. This work develops a novel technique for rapid, scalable fabrication of EW-based devices and studies critical microfluidic operations underlying the EHP, with the objective of predicting the key performance parameters of the EHP. Devices are fabricated on a printed circuit board (PCB) substrate with mechanically-milled electrodes, and a removable polyimide dielectric film. The first set of experiments uncovers the maximum channel gap (1 mm) for reliable EW-based pumping; this parameter determines the heat transport capacity of the EHP, which scales linearly with the channel gap. The second set of experiments uncovers the maximum channel gap (375 microns) at which EW voltages can successfully split droplets. This is an important consideration which ensures EHP operability in the event of more »
- Award ID(s):
- 1653412
- Publication Date:
- NSF-PAR ID:
- 10062016
- Journal Name:
- Journal of micromechanics and microengineering
- Volume:
- 27
- Page Range or eLocation-ID:
- 075004
- ISSN:
- 0960-1317
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Antimicrobial resistance is a well-documented public health concern. The role that drinking water distribution pipes have as sources of antibiotic resistance genes (ARGs) is not well known. Metals are a known stressor for antibiotic resistance development, implying that aging metal-pipe infrastructure could be a source of ARGs. The objective of this study was to determine if ARGs, metal resistance genes (MRGs), and intI 1 were pervasive across various pipe biofilm sample types (biomass surfaces, pipe surfaces, corrosion tubercles, and under corrosion tubercles) and if the resistance genes associated with particular microbial taxa. Eight sample types in triplicate ( n =more »
-
Dropwise condensation heat transfer is significantly higher than filmwise condensation heat transfer due to the absence of the thermal resistance associated with the condensed water film. This study uses electrowetting to enhance coalescence and roll-off of condensed droplets, with the objective of enhancing the condensation rate. Coalescence enhancement is achieved by electric field-driven droplet motion such as translation of droplets, and oscillations of the three-phase line. Experiments are conducted to study early-stage droplet growth dynamics, and steady state condensation under electrowetting fields. Results show that droplet growth and roll-off increases with the voltage and frequency of the applied AC field.more »
-
Dropwise condensation yields higher heat transfer coefficients by avoiding the thermal resistance of the condensate film, seen during filmwise condensation. This work explores further enhancement of dropwise condensation heat transfer through the use of electrowetting to achieve faster droplet growth via coalescence of the condensed droplets. Electrowetting is a well understood microfluidic technique to actuate and control droplets. This work shows that AC electric fields can significantly enhance droplet growth dynamics. This enhancement is a result of coalescence triggered by various types of droplet motion (translation of droplets, oscillations of three phase line), which in turn depends on the frequencymore »
-
Core formation in small planetary bodies likely involves percolation of immiscible liquids (e.g. S- and C- rich iron alloys) through pore spaces in a silicate medium. The manner in which this phenomenon occurs is not fully understood. Furthermore, it is unknown whether the metallic melts can physically segregate during percolation. To improve our understanding of core formation in small planetesimals, we performed analog experiments. We used an emulsion of oil and water to simulate an emulsion of S-rich and C-rich iron alloys, respectively. The experiments were performed in a Hele-Shaw cell, a thin “channel” made of two acrylic plates (51more »