skip to main content

Title: Electrowetting-based microfluidic operations on rapid- manufactured devices for heat pipe applications
The heat transport capacity of traditional heat pipes is limited by the capillary pressure generated in the internal wick that pumps condensate to the evaporator. Recently, the authors conceptualized a novel heat pipe architecture, wherein wick-based pumping is replaced by electrowetting (EW)-based pumping of microliter droplets in the adiabatic section. An electrowetting heat pipe (EHP) can overcome the capillary limit to heat transport capacity and enable compact, planar, gravity-insensitive, and ultralow power consumption heat pipes that transport kiloWatt heat loads over extended distances. This work develops a novel technique for rapid, scalable fabrication of EW-based devices and studies critical microfluidic operations underlying the EHP, with the objective of predicting the key performance parameters of the EHP. Devices are fabricated on a printed circuit board (PCB) substrate with mechanically-milled electrodes, and a removable polyimide dielectric film. The first set of experiments uncovers the maximum channel gap (1 mm) for reliable EW-based pumping; this parameter determines the heat transport capacity of the EHP, which scales linearly with the channel gap. The second set of experiments uncovers the maximum channel gap (375 microns) at which EW voltages can successfully split droplets. This is an important consideration which ensures EHP operability in the event of more » unintentional droplet merging. The third set of experiments demonstrate and study EW-induced droplet generation from an open-to-air reservoir, which mimics the interface between the condenser and adiabatic sections of the EHP. The experimental findings predict that planar, water-based EHPs with a (10 cm by 4 mm) cross section can transport 1.6 kW over extended distances (>1 m), with a thermal resistance of 0.01 K W−1. « less
Award ID(s):
Publication Date:
Journal Name:
Journal of micromechanics and microengineering
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Most studies on electrowetting (EW) involve the use of AC electric fields, which cause droplets to oscillate in response to the sinusoidal waveform. Oscillation-driven mixing in droplets is the basis for multiple microfluidic applications. Presently, we study the voltage and AC frequency-dependent oscillations of electrowetted water droplets on a smooth, hydrophobic surface. We introduce a new approach towards analyzing droplet oscillations, which involves characterization of the oscillation amplitude of the contact angle (CA). An experimentally validated, fundamentals-based model to predict voltage and frequency-dependent CA oscillations is developed, which is analogous to the Lippmann’s equation for predicting voltage-dependent CAs. Itmore »is seen that this approach can help estimate the threshold voltage more accurately, than from experimental measurements of CA change. Additionally, we use a coplanar electrode configuration with high voltage and ground electrodes arranged on the substrate. This configuration eliminates measurement artefacts in the classical EW configuration associated with a wire electrode protruding into the droplet. An interesting consequence of this configuration is that the system capacitance is reduced substantially, compared to the classical configuration. The coplanar electrode configuration shows a reduced rate of CA change with voltage, thereby increasing the voltage range over which the CA can be modulated.

    « less
  2. Antimicrobial resistance is a well-documented public health concern. The role that drinking water distribution pipes have as sources of antibiotic resistance genes (ARGs) is not well known. Metals are a known stressor for antibiotic resistance development, implying that aging metal-pipe infrastructure could be a source of ARGs. The objective of this study was to determine if ARGs, metal resistance genes (MRGs), and intI 1 were pervasive across various pipe biofilm sample types (biomass surfaces, pipe surfaces, corrosion tubercles, and under corrosion tubercles) and if the resistance genes associated with particular microbial taxa. Eight sample types in triplicate ( n =more »24) were taken from inside a >100 year-old, six ft. section of a full-scale chloraminated cast iron drinking water main. Droplet digital PCR (ddPCR) was employed as a novel approach to quantify ARGs in pipes from full-scale drinking water distribution systems (DWDS) because it yielded higher detection frequencies than quantitative PCR (qPCR). Illumina sequencing was employed to characterize the microbial community based on 16S rRNA genes. ARGs and MRGs were detected in all 24 pipe samples. Every sample contained targeted genes. Interestingly, the mean absolute abundances of ARGs and MRGs only varied by approximately one log value across sample types, but the mean relative abundances (copy numbers normalized to 16S rRNA genes) varied by over two log values. The ARG and MRGs concentrations were not significantly different between sample types, despite significant changes in dominant microbial taxa. The most abundant genera observed in the biofilm communities were Mycobacterium (0.2–70%), and β-lactam resistance genes bla TEM , bla SHV , and the integrase gene of class 1 integrons ( intI 1) were positively correlated with Mycobacterium . The detection of ARGs, MRGs, and class 1 integrons across all sample types within the pipe indicates that pipes themselves can serve as sources for ARGs in DWDS. Consequently, future work should investigate the role of pipe materials as well as corrosion inhibitors to determine how engineering decisions can mitigate ARGs in drinking water that stem from pipe materials.« less
  3. Dropwise condensation heat transfer is significantly higher than filmwise condensation heat transfer due to the absence of the thermal resistance associated with the condensed water film. This study uses electrowetting to enhance coalescence and roll-off of condensed droplets, with the objective of enhancing the condensation rate. Coalescence enhancement is achieved by electric field-driven droplet motion such as translation of droplets, and oscillations of the three-phase line. Experiments are conducted to study early-stage droplet growth dynamics, and steady state condensation under electrowetting fields. Results show that droplet growth and roll-off increases with the voltage and frequency of the applied AC field.more »AC electric fields are seen to be more effective than DC electric fields. The overall condensation rate depends on the roll-off size of droplets, frequency of roll-off events, and on the interactions of the rolled-off droplets with the remainder of the droplets. All these phenomena can be altered by the applied electric field. An analytical heat transfer model is developed which uses the measured droplet size distribution to estimate the surface heat flux. Overall, this study reports that electric fields can enhance the condensation rate by more than 30 %.« less
  4. Dropwise condensation yields higher heat transfer coefficients by avoiding the thermal resistance of the condensate film, seen during filmwise condensation. This work explores further enhancement of dropwise condensation heat transfer through the use of electrowetting to achieve faster droplet growth via coalescence of the condensed droplets. Electrowetting is a well understood microfluidic technique to actuate and control droplets. This work shows that AC electric fields can significantly enhance droplet growth dynamics. This enhancement is a result of coalescence triggered by various types of droplet motion (translation of droplets, oscillations of three phase line), which in turn depends on the frequencymore »of the applied AC waveform. The applied electric field modifies droplet condensation patterns as well as the roll-off dynamics on the surface. Experiments are conducted to study early-stage droplet growth dynamics, as well as steady state condensation rates under the influence of electric fields. It is noted that this study deals with condensation of humid air, and not pure steam. Results show that increasing the voltage magnitude and frequency increases droplet growth rate and overall condensation rate. Overall, this study reports more than a 30 % enhancement in condensation rate resulting from the applied electric field, which highlights the potential of this concept for condensation heat transfer enhancement.« less
  5. Core formation in small planetary bodies likely involves percolation of immiscible liquids (e.g. S- and C- rich iron alloys) through pore spaces in a silicate medium. The manner in which this phenomenon occurs is not fully understood. Furthermore, it is unknown whether the metallic melts can physically segregate during percolation. To improve our understanding of core formation in small planetesimals, we performed analog experiments. We used an emulsion of oil and water to simulate an emulsion of S-rich and C-rich iron alloys, respectively. The experiments were performed in a Hele-Shaw cell, a thin “channel” made of two acrylic plates (51more »cm x 15 cmx 1.3 cm) kept apart with a thin aluminum plate (0.27 mm). A U-shaped cut out of the aluminum plate formed the channel. We used a syringe pump to inject the emulsion into the channel through a hole in the top plate. We investigated the effect of injection rate and droplet size on the percolation behavior of the emulsion. We observed that droplet velocity was size dependent. The smallest droplet size detected was 0.0133 mm2 with a velocity of 0.67 mm/s. Medium size droplets ranged from 0.03mm2 – ~10 mm2 with average velocity of ~0.43 mm/s. Larger droplets moved faster: the largest droplet, with an area of 91.4 mm2, had a velocity of 7.95 mm/s. We suggest that (1) suspended droplets slow down when they begin to touch the Hele-Shaw plates (medium size droplets), and (2) droplets flow faster when they become large enough to deform with the flow. We also tested percolation through a channel filled with polydisperse acrylic particles of diameter < 50 µm. When injected into the granular matrix, the oil formed a wetting front while the water advanced in “pulses”. These pulses may represent the faster flow of larger water droplets. In conclusion, the size of the droplets affects their velocity and possibly their ability to migrate through pore networks. The results suggest that immiscible liquids could potentially segregate due to different percolation efficiencies of the non-wetting/wetting phases. Consequently, this would affect the distribution of the metallic components within differentiated planetesimals.« less