Oscillating heat pipes (OHPs) represent a promising advancement over traditional heat pipes, yet their operational boundaries, especially for long OHPs, remain insufficiently understood. This study investigates the impact of varying adiabatic length, channel diameter, and fill ratio on thermal performance, crucial for assessing their suitability for engineering applications like spacecraft thermal management. Three long OHPs, ranging from 451 mm to 770 mm in total length, were subjected to multiple performance tests, employing channel diameters of 1.1 mm and 1.9 mm, along with adiabatic lengths of 305 mm and 610 mm. The experimental setup involved mounting the OHPs onto a testbed, monitored by nine K-type thermocouples. The tests, conducted horizontally to eliminate gravity-assistance, revealed that thermal performance is significantly influenced by channel diameter, adiabatic length, and fill ratio. Notably, optimal performance was observed at a 50% fill ratio, while reductions in diameter hindered start-up at a 70% fill ratio and failed to start-up at 30% fill ratio. These findings highlight the limitations of long OHPs, which is crucial to determine the limits of their applicability and dimensional constraints.
more »
« less
Electrowetting-based microfluidic operations on rapid- manufactured devices for heat pipe applications
The heat transport capacity of traditional heat pipes is limited by the capillary pressure generated in the internal wick that pumps condensate to the evaporator. Recently, the authors conceptualized a novel heat pipe architecture, wherein wick-based pumping is replaced by electrowetting (EW)-based pumping of microliter droplets in the adiabatic section. An electrowetting heat pipe (EHP) can overcome the capillary limit to heat transport capacity and enable compact, planar, gravity-insensitive, and ultralow power consumption heat pipes that transport kiloWatt heat loads over extended distances. This work develops a novel technique for rapid, scalable fabrication of EW-based devices and studies critical microfluidic operations underlying the EHP, with the objective of predicting the key performance parameters of the EHP. Devices are fabricated on a printed circuit board (PCB) substrate with mechanically-milled electrodes, and a removable polyimide dielectric film. The first set of experiments uncovers the maximum channel gap (1 mm) for reliable EW-based pumping; this parameter determines the heat transport capacity of the EHP, which scales linearly with the channel gap. The second set of experiments uncovers the maximum channel gap (375 microns) at which EW voltages can successfully split droplets. This is an important consideration which ensures EHP operability in the event of unintentional droplet merging. The third set of experiments demonstrate and study EW-induced droplet generation from an open-to-air reservoir, which mimics the interface between the condenser and adiabatic sections of the EHP. The experimental findings predict that planar, water-based EHPs with a (10 cm by 4 mm) cross section can transport 1.6 kW over extended distances (>1 m), with a thermal resistance of 0.01 K W−1.
more »
« less
- Award ID(s):
- 1653412
- PAR ID:
- 10062016
- Date Published:
- Journal Name:
- Journal of micromechanics and microengineering
- Volume:
- 27
- ISSN:
- 0960-1317
- Page Range / eLocation ID:
- 075004
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Dropwise condensation heat transfer is significantly higher than filmwise condensation heat transfer due to the absence of the thermal resistance associated with the condensed water film. This study uses electrowetting to enhance coalescence and roll-off of condensed droplets, with the objective of enhancing the condensation rate. Coalescence enhancement is achieved by electric field-driven droplet motion such as translation of droplets, and oscillations of the three-phase line. Experiments are conducted to study early-stage droplet growth dynamics, and steady state condensation under electrowetting fields. Results show that droplet growth and roll-off increases with the voltage and frequency of the applied AC field. AC electric fields are seen to be more effective than DC electric fields. The overall condensation rate depends on the roll-off size of droplets, frequency of roll-off events, and on the interactions of the rolled-off droplets with the remainder of the droplets. All these phenomena can be altered by the applied electric field. An analytical heat transfer model is developed which uses the measured droplet size distribution to estimate the surface heat flux. Overall, this study reports that electric fields can enhance the condensation rate by more than 30 %.more » « less
-
Dropwise condensation yields higher heat transfer coefficients by avoiding the thermal resistance of the condensate film, seen during filmwise condensation. This work explores further enhancement of dropwise condensation heat transfer through the use of electrowetting to achieve faster droplet growth via coalescence of the condensed droplets. Electrowetting is a well understood microfluidic technique to actuate and control droplets. This work shows that AC electric fields can significantly enhance droplet growth dynamics. This enhancement is a result of coalescence triggered by various types of droplet motion (translation of droplets, oscillations of three phase line), which in turn depends on the frequency of the applied AC waveform. The applied electric field modifies droplet condensation patterns as well as the roll-off dynamics on the surface. Experiments are conducted to study early-stage droplet growth dynamics, as well as steady state condensation rates under the influence of electric fields. It is noted that this study deals with condensation of humid air, and not pure steam. Results show that increasing the voltage magnitude and frequency increases droplet growth rate and overall condensation rate. Overall, this study reports more than a 30 % enhancement in condensation rate resulting from the applied electric field, which highlights the potential of this concept for condensation heat transfer enhancement.more » « less
-
Heat pipes are passive heat transfer devices crucial for systems on spacecraft; however, they can freeze when exposed to extreme cold temperatures. The research on freezing mechanisms on wicked surfaces, such as those found in heat pipes, is limited. Surface characteristics, including surface topography, have been found to impact freezing. This work investigates freezing mechanisms on wicks during condensation freezing. Experiments were conducted in an environmental chamber at 22 °C and 60% relative humidity on three types of surfaces (i.e., plain copper, sintered heat pipe wicks, and grooved heat pipe wicks). The plain copper surface tended to freeze via ice bridging—consistent with other literature—before the grooved and sintered wicks at an average freezing time of 4.6 min with an average droplet diameter of 141.9 ± 58.1 μm at freezing. The grooved surface also froze via ice bridging but required, on average, almost double the length of time the plain copper surface took to freeze, 8.3 min with an average droplet diameter of 60.5 ± 27.9 μm at freezing. Bridges could not form between grooves, so initial freezing for each groove was stochastic. The sintered wick's surface could not propagate solely by ice bridging due to its topography, but also employed stochastic freezing and cascade freezing, which prompted more varied freezing times and an average of 10.9 min with an average droplet diameter of 97.4 ± 32.9 μm at freezing. The topography of the wicked surfaces influenced the location of droplet nucleation and, therefore, the ability for the droplet-to-droplet interaction during the freezing process.more » « less
-
We report a digital microfluidic device to transport aqueous droplets on an open surface in air using electrowetting-on-dielectric (EWOD) with anisotropic ratchet conveyors (ARCs). ARCs are micro-sized periodic semicircular hydrophilic regions on a hydrophobic background, providing anisotropic wettability. SiNx and Cytop are used as the dielectric layer between the water droplet and working electrodes. By adopting parylene as a stencil mask, hydrophilic patterning on the hydrophobic Cytop thin film layer is achieved without the loss of Cytop hydrophobicity. While the traditional EWOD platform requires the control of multiple electrodes to transport the droplet, our system utilizes only two controlling electrodes. We demonstrate that 15 μl water droplets are transported at a speed of 13 mm/s under 60 Vpeak sinusoid AC signal at 50 Hz. Droplet transport at 20 Hz is also presented, demonstrating that the system can operate within a range of frequencies.more » « less
An official website of the United States government

