skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Physical mechanisms for delaying condensation freezing on grooved and sintered wicking surfaces
Heat pipes are passive heat transfer devices crucial for systems on spacecraft; however, they can freeze when exposed to extreme cold temperatures. The research on freezing mechanisms on wicked surfaces, such as those found in heat pipes, is limited. Surface characteristics, including surface topography, have been found to impact freezing. This work investigates freezing mechanisms on wicks during condensation freezing. Experiments were conducted in an environmental chamber at 22 °C and 60% relative humidity on three types of surfaces (i.e., plain copper, sintered heat pipe wicks, and grooved heat pipe wicks). The plain copper surface tended to freeze via ice bridging—consistent with other literature—before the grooved and sintered wicks at an average freezing time of 4.6 min with an average droplet diameter of 141.9 ± 58.1  μm at freezing. The grooved surface also froze via ice bridging but required, on average, almost double the length of time the plain copper surface took to freeze, 8.3 min with an average droplet diameter of 60.5 ± 27.9  μm at freezing. Bridges could not form between grooves, so initial freezing for each groove was stochastic. The sintered wick's surface could not propagate solely by ice bridging due to its topography, but also employed stochastic freezing and cascade freezing, which prompted more varied freezing times and an average of 10.9 min with an average droplet diameter of 97.4 ± 32.9  μm at freezing. The topography of the wicked surfaces influenced the location of droplet nucleation and, therefore, the ability for the droplet-to-droplet interaction during the freezing process.  more » « less
Award ID(s):
1828571
PAR ID:
10423625
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Applied Physics Letters
Volume:
121
Issue:
7
ISSN:
0003-6951
Page Range / eLocation ID:
071601
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The freezing process is significantly influenced by environmental factors and surface morphologies. At atmospheric pressure, a surface below the dew and freezing point temperature for a given relative humidity nucleates water droplets heterogeneously on the surface and then freezes. This paper examines the effect of nanostructured surfaces on the nucleation, growth, and subsequent freezing processes. Microsphere Photolithography (MPL) is used to pattern arrays of silica nanopillars. This technique uses a self-assembled lattice of microspheres to focus UV radiation to an array of photonic jets in photoresist. Silica is deposited using e-beam evaporation and lift-off. The samples were placed on a freezing stage at an atmospheric temperature of 22±0.5°C and relative humidities of 40% or 60%. The nanopillar surfaces had a significant effect on droplet dynamics and freezing behavior with freezing accelerated by an order of magnitude compared to a plain hydrophilic surface at 60% RH where the ice bridges need to cover a larger void for the propagation of the freezing front within the growing droplets. By pinning droplets, coalescence is suppressed for the nanopillared surface, altering the size distribution of droplets and accelerating the freezing process. The main mechanism affecting freezing characteristics was the pinning behavior of the nanopillared surface. 
    more » « less
  2. Abstract This work presents the experimental characterization of pool boiling heat transfer enhancement on cylindrical tubes with circumferential micro-channels using saturated water at atmospheric pressure as the working fluid. Three engineered copper tubes with 300 μm, 600 μm and 900 μm fin width and a fixed 400 μm channel width with 410 μm channel depth were machined using CNC. To compare the boiling enhancement on engineered tubes, one plain copper tube was used as the reference heater. The active heating area on the cylindrical tubes had a dimension of 9.5 mm outer diameter and 10.5 mm length. A custom-built cylindrical heater was designed using a nichrome wire coil of 30 AWG with a resistance of 19.57 Ω/inch of coil to provide joule heating to the cylindrical tubes. The electrical wire was insulated from the copper heater using a thin layer of alumina paste. The saturated pool boiling tests up to critical heat flux (CHF) were conducted at atmospheric pressure. While an approximate CHF of ∼70 W/cm2 was achieved for the plain copper tube, the cylindrical tube with microchannel geometry showed a CHF range of 131–144 W/cm2 that corresponds to 87%–100% enhancement as compared to plain cylindrical tube. 
    more » « less
  3. This paper investigates the effects of hemispherical mounds on filmwise condensation heat transfer in micro-channels. Also investigated were the impacts that spatial orientation of the three-sided condensation surface (i.e., gravitational effects) on steam condensation, where the cooled surfaces were either the lower surface (i.e., gravity pulls liquid towards the condensing surfaces) or upper surface (i.e., gravity pulls liquid away from the condensing surfaces). Two test coupons were used with 1.9-mm hydraulic diameters and either a plain copper surface or a copper surface modified with 2-mm diameter hemispherical mounds. Heat transfer coefficients, film visualization, and pressure drop measurements were recorded for both coupons in both orientations at mass fluxes of 50 kg/m 2 s and 125 kg/m 2 s. For all test conditions, the mounds were found to increase condensation heat transfer coefficients by at minimum 13% and at maximum 79%. When the test section was inverted (i.e., condensing surface on the top of flowing steam), minimal differences were found in mound performance, while the plain coupon reduces heat transfer coefficients by as much as 14%. Flow visualization suggests that the mounds enhanced heat transfer due to the disruption of the film as well as by reducing the thermal resistance of the film. Pressure drops followed parabolic behavior with quality, being higher in the mound coupon than the plain coupon. No significant pressure drop differences in the inverted orientation were observed. 
    more » « less
  4. Abstract Synthetic surfaces engineered to regulate phase transitions of matter and exercise control over its undesired accrual (liquid or solid) play a pivotal role in diverse industrial applications. Over the years, the design of repellant surfaces has transitioned from solely modifying the surface texture and chemistry to identifying novel material systems. In this study, selection criteria are established to identify bio‐friendly phase change materials (PCMs) from an extensive library of vegetable‐based/organic/essential oils that can thermally respond by harnessing the latent heat released during condensation and thereby delaying ice/frost formation in the very frigid ambient that is detrimental to its functionality. Concurrently, a comprehensive investigation is conducted to elucidate the relation between microscale heat transport phenomena during condensation and the resulting macroscopic effects (e.g., delayed droplet freezing) on various solidified PCMs as a function of their inherent thermo‐mechanical properties. In addition, to freeze protection, many properties that are responsive to the thermal reflex of the surface, such as the ability to dynamically tune optical transparency, moisture harvesting, ice shedding, and quick in‐field repairability, are achievable, resulting in the development of protective coatings capable of spanning a wide range of functionalities and thereby having a distinctive edge over conventional solutions. 
    more » « less
  5. Directional graphene aerogels (DGAs) are proposed as electrode materials to alleviate ionic and mass transport issues in organic redox flow batteries (ORFBs). DGAs with high pore directionality would provide low resistance channels for effective ionic charge and liquid electrolyte transport in these devices. DGAs’ porous and directional characteristics can be controlled by the growth of ice crystals during freeze casting, which is influenced by the self-diffusivity of water, phase change driving forces, water−ice graphene interactions, and convection in the water−graphene media. It is found that mass transport-related properties of DGAs, including pore size and directionality, show a significant dependence on freezing temperature, graphene oxide (GO) loadings, and synthesis vessel diameter-to-height ratio (D/H). For the freezing temperature change from −20 to −115 °C, the average pore size progressively decreased from 120 to 20 μm, and the pore directionality transitioned from lamellar to ill-defined structures. When GO loadings were increased from 2 to 10 mg/mL at a fixed freezing temperature, pore size reduction was observed with less defined directionality. Furthermore, the pore directionality diminished with an increased width-to-height aspect ratio of DGA samples due to the buoyancy-driven convective circulation, which interfered with the directional ice/pore growth. Understanding the comprehensive effects of these mechanisms enables the controlled growth of ice crystals, leading to graphene aerogels with highly directional microstructures. 
    more » « less