skip to main content


Title: The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VII. Properties of the Host Galaxy and Constraints on the Merger Timescale
Award ID(s):
1707954 1708081 1714498
NSF-PAR ID:
10062273
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; « less
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
848
Issue:
2
ISSN:
2041-8213
Page Range / eLocation ID:
L22
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Galaxy clustering measurements can be used to constrain many aspects of galaxy evolution, including galaxy host halo masses, satellite quenching efficiencies, and merger rates. We simulate JWST galaxy clustering measurements at z ∼ 4–10 by utilizing mock galaxy samples produced by an empirical model, the universemachine. We also adopt the survey footprints and typical depths of the planned joint NIRCam and NIRSpec Guaranteed Time Observation program planned for Cycle 1 to generate realistic JWST survey realizations and to model high-redshift galaxy selection completeness. We find that galaxy clustering will be measured with ≳5σ significance at z ∼ 4–10. Halo mass precisions resulting from Cycle 1 angular clustering measurements will be ∼0.2 dex for faint (−18 ≳ $\mathit {M}_{\mathrm{UV}}^{ }$ ≳ −19) galaxies at z ∼ 4–10 as well as ∼0.3 dex for bright ($\mathit {M}_{\mathrm{UV}}^{ }$ ∼ −20) galaxies at z ∼ 4–7. Dedicated spectroscopic follow-up over ∼150 arcmin2 would improve these precisions by ∼0.1 dex by removing chance projections and low-redshift contaminants. Future JWST observations will therefore provide the first constraints on the stellar–halo mass relation in the epoch of reionization and substantially clarify how this relation evolves at z > 4. We also find that ∼1000 individual satellites will be identifiable at z ∼ 4–8 with JWST, enabling strong tests of satellite quenching evolution beyond currently available data (z ≲ 2). Finally, we find that JWST observations can measure the evolution of galaxy major merger pair fractions at z ∼ 4–8 with ∼0.1–0.2 dex uncertainties. Such measurements would help determine the relative role of mergers to the build-up of stellar mass into the epoch of reionization. 
    more » « less