Twenty-four centrifuge model tests of liquefaction and lateral spreading, performed as part of a round robin test program, are shared and compared in this archive. Please see the general report section of the published project for an overview comparison and background of all of the experiments. One document in the report (with “ReadMe” in the file name) describes the organization of the data archive. The comparisons presented in the general report section will serve as an index to help the users find individual experiments of interest. This data from 24 model tests is published as nine separate experiments in this archive (one experiment per centrifuge facility). Each experiment includes two or three model tests and each model test includes between one and three destructive shaking events. All of the tests modeled a 4 m thick deposit of Ottawa F-65 sand with a 5-degree surface slope in a rigid box. The tests covered a range of ground motion intensities and a range of relative densities to define the median response and the sensitivity of the response to relative density and shaking intensity. The nine centrifuge facilities involved in this test program included Cambridge University (UK), Ehime University (Japan), IFSTTAR (France), NCU (Taiwan), KAIST (Korea), Kyoto University (Japan), RPI (USA), UC Davis (USA), and Zhejiang University (China).
more »
« less
Twenty-Four Centrifuge Tests to Quantify Sensitivity of Lateral Spreading to Dr and PGA
Twenty-four centrifuge model tests have been conducted at nine different geotechnical centrifuge facilities around the world as part of the international LEAP effort (liquefaction experiments and analysis projects). All of the centrifuge models represent a 4 m deep 5 degree sloping submerged sand deposit. The mean effective PGA of the input motion for all of the experiments was approximately 0.15 g and the mean relative density was approximately 65%, but the effective PGA’s varied between about 0.07 g and 0.3 g, and the relative densities varied between about 40% and 75%. The test matrix was designed to enable experimental quantification of not only the median response but also the trend and sensitivity of the model response to density and shaking intensity. Quantification of the sensitivity of the response to initial conditions is a prerequisite for objective evaluation of the quality of the model test data. In other words, a discrepancy between two experiments should be evaluated after accounting for the uncertainty in the initial conditions and the sensitivity of the response to initial conditions. For the first time, a sufficient number of experiments has been performed on a similar problem to provide meaningful quantitative evaluation of the trend between PGA, density, and displacement. The sensitivity is quantified by the gradient of the trend and the uncertainty of the trend is quantified from the residuals between the fitting data and the trend.
more »
« less
- PAR ID:
- 10062324
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Geotechnical Earthquake Engineering and Soil Dynamics V GSP 293
- Page Range / eLocation ID:
- 383 to 393
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recent studies have focused on how the dynamic response of a clean sand changes with increasing fines content; however, there remains a limited understanding regarding the effects of increasing coarse content. This study aims to elucidate these effects at a system level via centrifuge testing of two uniformly-graded and one well-graded soil mixture which range in mean grain diameter (D50) from 0.18 to 2.58 mm and in coefficient of uniformity (CU) from 1.53 to 7.44. Models of each soil mixture were prepared to approximately 50% relative density (DR) and subjected to uniform cycles of sinusoidal acceleration at various Arias intensities (Ia). The high hydraulic conductivity (k) of the coarsest, uniformly-graded mixture prevented significant excess pore pressure generation; however, liquefaction was induced in the other two mixtures. Furthermore, the well-graded mixture exhibited a stronger dilative tendency than the clean sand. The centrifuge results were compared to cyclic direct simple shear (DSS) results in order to consider the complementary perspectives that centrifuge and element testing can provide.more » « less
-
The experimental results of LEAP (Liquefaction Experiments and Analysis Projects) centrifuge test replicas of a saturated sloping deposit are used to assess the sensitivity of soil accelerations to variability in input motion and soil deposition. A difference metric is used to quantify the dissimilarities between recorded acceleration time histories. This metric is uniquely decomposed in terms of four difference component measures associated with phase, frequency shift, amplitude at 1 Hz, and amplitude of frequency components higher than 2 Hz (2 + Hz). The sensitivity of the deposit response accelerations to differences in input motion amplitude at 1 Hz and 2 + Hz and cone penetration resistance (used as a measure reflecting soil deposition and initial grain packing condition) was obtained using a Gaussian process-based kriging. These accelerations were found to be more sensitive to variations in cone penetration resistance values than to the amplitude of the input motion 1 Hz and 2 + Hz (frequency) components. The sensitivity functions associated with this resistance parameter were found to be substantially nonlinear.more » « less
-
The effect of soil interlayering on the measured cone penetration resistance was examined in a layered soil model tested on a 9-m radius centrifuge. The soil profile consisted of a layer of sand between overlying and underlying layers of low plasticity clayey silt. The sand layer thickness varied from 0 to 240 mm (model scale) along the length of the model. The sand was loose with a relative density of 44% on one side of the model, and dense with a relative density of 88% on the other side. The clayey silt had a plasticity index (PI) of 6 and over-consolidation ratio (OCR) of about 1.5. Multiple cone penetration soundings were performed along the width and length of the model using cone penetrometers with diameters of 4, 6 and 10 mm. The model construction procedure, data processing, and cone penetration testing results are described.more » « less
-
The results of a series of nonlinear finite element simulations are presented to demonstrate the effects of base motion variability on liquefaction-induced lateral spreading of mildly sloping grounds. The analyses are part of the 2017 Liquefaction Experiments and Analysis Project (LEAP-2017). A key objective of LEAP is to generate a database of reliable centrifuge experiments to facilitate the validation of the current state-of-the-art analysis tools for the modeling of soil liquefaction. In the context of centrifuge experiments, the sources of uncertainty in the base motion are the magnitude and frequency content differences between the target and the achieved base motions. While centrifuge experiments are conducted with diligence, achieving the target base motion is restricted by the machine limitation and the presence of noise. A series of Monte Carlo (MC) simulations are performed to investigate the effects of the base motion variability. Base motion statistics are obtained as a function of frequency capturing the variations observed in the spectral accelerations of the achieved base motions. The simulations presented in this paper consider the cases of homogeneous soil as well as spatially variable soil conditions. The results of the MC simulations are used to shed light on how small deviations of the achieved base motion from the target motion might influence the response of liquefiable ground. Sensitivity of the computed soil responses to these deviations are assessed by considering the variations of excess pore pressures, lateral spreading, and ground surface settlements.more » « less
An official website of the United States government

