Edge bundling is a promising graph visualization approach to simplifying the visual result of a graph drawing. Plenty of edge bundling methods have been developed to generate diverse graph layouts. However, it is difficult to defend an edge bundling method with its resulting layout against other edge bundling methods as a clear theoretic evaluation framework is absent in the literature. In this paper, we propose an information-theoretic framework to evaluate the visual results of edge bundling techniques. We first illustrate the advantage of edge bundling visualizations for large graphs, and pinpoint the ambiguity resulting from drawing results. Second, we define and quantify the amount of information delivered by edge bundling visualization from the underlying network using information theory. Third, we propose a new algorithm to evaluate the resulting layouts of edge bundling using the amount of the mutual information between a raw network dataset and its edge bundling visualization. Comparison examples based on the proposed framework between different edge bundling techniques are presented.
more »
« less
MLSEB: Edge Bundling Using Moving Least Squares Approximation
Edge bundling methods can effectively alleviate visual clutter and reveal high-level graph structures in large graph visualization. Researchers have devoted significant efforts to improve edge bundling according to different metrics. As the edge bundling family evolve rapidly, the quality of edge bundles receives increasing attention in the literature accordingly. In this paper, we present MLSEB, a novel method to generate edge bundles based on moving least squares (MLS) approximation. In comparison with previous edge bundling methods, we argue that our MLSEB approach can generate better results based on a quantitative metric of quality, and also ensure scalability and the efficiency for visualizing large graphs.
more »
« less
- Award ID(s):
- 1652846
- PAR ID:
- 10062338
- Date Published:
- Journal Name:
- Graph Drawing and Network Visualization: 25th International Symposium, GD 2017
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Diffusion-based graph generative models are effective in generating high-quality small graphs. However, it is hard to scale them to large graphs that contain thousands of nodes. In this work, we propose EDGE, a new diffusion-based graph generative model that addresses generative tasks for large graphs. The model is developed by reversing a discrete diffusion process that randomly removes edges until obtaining an empty graph. It leverages graph sparsity in the diffusion process to improve computational efficiency. In particular, EDGE only focuses on a small portion of graph nodes and only adds edges between these nodes. Without compromising modeling ability, it makes much fewer edge predictions than previous diffusion-based generative models. Furthermore, EDGE can explicitly model the node degrees of training graphs and then gain performance improvement in capturing graph statistics. The empirical study shows that EDGE is much more efficient than competing methods and can generate large graphs with thousands of nodes. It also outperforms baseline models in generation quality: graphs generated by the proposed model have graph statistics more similar to those of training graphs.more » « less
-
Diffusion-based graph generative models are effective in generating high-quality small graphs. However, it is hard to scale them to large graphs that contain thousands of nodes. In this work, we propose EDGE, a new diffusion-based graph generative model that addresses generative tasks for large graphs. The model is developed by reversing a discrete diffusion process that randomly removes edges until obtaining an empty graph. It leverages graph sparsity in the diffusion process to improve computational efficiency. In particular, EDGE only focuses on a small portion of graph nodes and only adds edges between these nodes. Without compromising modeling ability, it makes much fewer edge predictions than previous diffusion-based generative models. Furthermore, EDGE can explicitly model the node degrees of training graphs and then gain performance improvement in capturing graph statistics. The empirical study shows that EDGE is much more efficient than competing methods and can generate large graphs with thousands of nodes. It also outperforms baseline models in generation quality: graphs generated by the proposed model have graph statistics more similar to those of training graphs.more » « less
-
Offering products in the forms of menu bundles is a common practice in marketing to attract customers and maximize revenues. In crowdfunding platforms such as Kickstarter, rewards also play an important part in influencing project success. Designing rewards consisting of the appropriate items is a challenging yet crucial task for the project creators. However, prior research has not considered the strategies project creators take to offer and bundle the rewards, making it hard to study the impact of reward designs on project success. In this paper, we raise a novel research question: understanding project creators’ decisions of reward designs to level their chance to succeed. We approach this by modeling the design behavior of project creators, and identifying the behaviors that lead to project success. We propose a probabilistic generative model, Menu-Offering-Bundle (MOB) model, to capture the offering and bundling decisions of project creators based on collected data of 14K crowdfunding projects and their 149K reward bundles across a half-year period. Our proposed model is shown to capture the offering and bundling topics, outperform the baselines in predicting reward designs.We also find that the learned offering and bundling topics carry distinguishable meanings and provide insights of key factors on project success.more » « less
-
null (Ed.)Graph synthesis is a long-standing research problem. Many deep neural networks that learn about latent characteristics of graphs and generate fake graphs have been proposed. However, in many cases their scalability is too high to be used to synthesize large graphs. Recently, one work proposed an interesting scalable idea to learn and generate random walks that can be merged into a graph. Due to its difficulty, however, the random walk-based graph synthesis failed to show state-of-the-art performance in many cases. We present an improved random walk-based method by using negative random walks. In our experiments with 6 datasets and 8 baseline methods, our method shows the best performance in almost all cases. We achieve both high scalability and generation quality.more » « less
An official website of the United States government

