skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Scalable Graph Synthesis with Adj and 1 — Adj
Graph synthesis is a long-standing research problem. Many deep neural networks that learn about latent characteristics of graphs and generate fake graphs have been proposed. However, in many cases their scalability is too high to be used to synthesize large graphs. Recently, one work proposed an interesting scalable idea to learn and generate random walks that can be merged into a graph. Due to its difficulty, however, the random walk-based graph synthesis failed to show state-of-the-art performance in many cases. We present an improved random walk-based method by using negative random walks. In our experiments with 6 datasets and 8 baseline methods, our method shows the best performance in almost all cases. We achieve both high scalability and generation quality.  more » « less
Award ID(s):
1822094
PAR ID:
10276745
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the 2021 SIAM International Conference on Data Mining (SDM)
Page Range / eLocation ID:
307-315
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. For a graph G on n vertices, naively sampling the position of a random walk of at time t requires work Ω(t). We desire local access algorithms supporting positionG(t) queries, which return the position of a random walk from some fixed start vertex s at time t, where the joint distribution of returned positions is 1/ poly(n) close to those of a uniformly random walk in ℓ1 distance. We first give an algorithm for local access to random walks on a given undirected d-regular graph with eO( 1 1−λ √ n) runtime per query, where λ is the second-largest eigenvalue of the random walk matrix of the graph in absolute value. Since random d-regular graphs G(n, d) are expanders with high probability, this gives an eO(√ n) algorithm for a graph drawn from G(n, d) whp, which improves on the naive method for small numbers of queries. We then prove that no algorithm with subconstant error given probe access to an input d-regular graph can have runtime better than Ω(√ n/ log(n)) per query in expectation when the input graph is drawn from G(n, d), obtaining a nearly matching lower bound. We further show an Ω(n1/4) runtime per query lower bound even with an oblivious adversary (i.e. when the query sequence is fixed in advance). We then show that for families of graphs with additional group theoretic structure, dramatically better results can be achieved. We give local access to walks on small-degree abelian Cayley graphs, including cycles and hypercubes, with runtime polylog(n) per query. This also allows for efficient local access to walks on polylog degree expanders. We show that our techniques apply to graphs with high degree by extending or results to graphs constructed using the tensor product (giving fast local access to walks on degree nϵ graphs for any ϵ ∈ (0, 1]) and Cartesian product. 
    more » « less
  2. Abstract MotivationAccurately representing biological networks in a low-dimensional space, also known as network embedding, is a critical step in network-based machine learning and is carried out widely using node2vec, an unsupervised method based on biased random walks. However, while many networks, including functional gene interaction networks, are dense, weighted graphs, node2vec is fundamentally limited in its ability to use edge weights during the biased random walk generation process, thus under-using all the information in the network. ResultsHere, we present node2vec+, a natural extension of node2vec that accounts for edge weights when calculating walk biases and reduces to node2vec in the cases of unweighted graphs or unbiased walks. Using two synthetic datasets, we empirically show that node2vec+ is more robust to additive noise than node2vec in weighted graphs. Then, using genome-scale functional gene networks to solve a wide range of gene function and disease prediction tasks, we demonstrate the superior performance of node2vec+ over node2vec in the case of weighted graphs. Notably, due to the limited amount of training data in the gene classification tasks, graph neural networks such as GCN and GraphSAGE are outperformed by both node2vec and node2vec+. Availability and implementationThe data and code are available on GitHub at https://github.com/krishnanlab/node2vecplus_benchmarks. All additional data underlying this article are available on Zenodo at https://doi.org/10.5281/zenodo.7007164. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less
  3. Subgraph-based graph representation learning (SGRL) has been recently proposed to deal with some fundamental challenges encountered by canonical graph neural networks (GNNs), and has demonstrated advantages in many important data science applications such as link, relation and motif prediction. However, current SGRL approaches suffer from scalability issues since they require extracting subgraphs for each training or test query. Recent solutions that scale up canonical GNNs may not apply to SGRL. Here, we propose a novel framework SUREL for scalable SGRL by co-designing the learning algorithm and its system support. SUREL adopts walk-based decomposition of subgraphs and reuses the walks to form subgraphs, which substantially reduces the redundancy of subgraph extraction and supports parallel computation. Experiments over six homogeneous, heterogeneous and higher-order graphs with millions of nodes and edges demonstrate the effectiveness and scalability of SUREL. In particular, compared to SGRL baselines, SUREL achieves 10X speed-up with comparable or even better prediction performance; while compared to canonical GNNs, SUREL achieves 50% prediction accuracy improvement. 
    more » « less
  4. As malicious bots reside in a network to disrupt network stability, graph neural networks (GNNs) have emerged as one of the most popular bot detection methods. However, in most cases these graphs are significantly class-imbalanced. To address this issue, graph oversampling has recently been proposed to synthesize nodes and edges, which still suffers from graph heterophily, leading to suboptimal performance. In this paper, we propose HOVER, which implements Homophilic Oversampling Via Edge Removal for bot detection on graphs. Instead of oversampling nodes and edges within initial graph structure, HOVER designs a simple edge removal method with heuristic criteria to mitigate heterophily and learn distinguishable node embeddings, which are then used to oversample minority bots to generate a balanced class distribution without edge synthesis. Experiments on TON IoT networks demonstrate the state-of-the-art performance of HOVER on bot detection with high graph heterophily and extreme class imbalance. 
    more » « less
  5. Network embedding has been an effective tool to analyze heterogeneous networks (HNs) by representing nodes in a low-dimensional space. Although many recent methods have been proposed for representation learning of HNs, there is still much room for improvement. Random walks based methods are currently popular methods to learn network embedding; however, they are random and limited by the length of sampled walks, and have difculty capturing network structural information. Some recent researches proposed using meta paths to express the sample relationship in HNs. Another popular graph learning model, the graph convolutional network (GCN) is known to be capable of better exploitation of network topology, but the current design of GCN is intended for homogenous networks. This paper proposes a novel combination of meta-graph and graph convolution, the meta-graph based graph convolutional networks (MGCN). To fully capture the complex long semantic information, MGCN utilizes different meta-graphs in HNs. As different meta-graphs express different semantic relationships, MGCN learns the weights of different meta-graphs to make up for the loss of semantics when applying GCN. In addition, we improve the current convolution design by adding node self-signicance. To validate our model in learning feature representation, we present comprehensive experiments on four real-world datasets and two representation tasks: classication and link prediction. WMGCN's representations can improve accuracy scores by up to around 10% in comparison to other popular representation learning models. What's more, WMGCN'feature learning outperforms other popular baselines. The experimental results clearly show our model is superior over other state-of-the-art representation learning algorithms. 
    more » « less