skip to main content


Title: A Dynamic Hash Table for the GPU
We design and implement a fully concurrent dynamic hash table for GPUs with comparable performance to the state of the art static hash tables. We propose a warp-cooperative work sharing strategy that reduces branch divergence and provides an efficient alternative to the tradi- tional way of per-thread (or per-warp) work assignment and processing. By using this strategy, we build a dynamic non- blocking concurrent linked list, the slab list, that supports asynchronous, concurrent updates (insertions and deletions) as well as search queries. We use the slab list to implement a dynamic hash table with chaining (the slab hash). On an NVIDIA Tesla K40c GPU, the slab hash performs updates with up to 512 M updates/s and processes search queries with up to 937 M queries/s. We also design a warp-synchronous dynamic memory allocator, SlabAlloc, that suits the high performance needs of the slab hash. SlabAlloc dynamically allocates memory at a rate of 600 M allocations/s, which is up to 37x faster than alternative methods in similar scenarios.  more » « less
Award ID(s):
1637458
NSF-PAR ID:
10062444
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IPDPS .... [proceedings]
ISSN:
2332-1237
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We design and implement a fully concurrent dynamic hash table for GPUs with comparable performance to the state of the art static hash tables. We propose a warp-cooperative work sharing strategy that reduces branch divergence and provides an efficient alternative to the traditional way of per-thread (or per-warp) work assignment and processing. By using this strategy, we build a dynamic non-blocking concurrent linked list, the slab list, that supports asynchronous, concurrent updates (insertions and deletions) as well as search queries. We use the slab list to implement a dynamic hash table with chaining (the slab hash). On an NVIDIA Tesla K40c GPU, the slab hash performs updates with up to 512 M updates/s and processes search queries with up to 937 M queries/s. We also design a warp-synchronous dynamic memory allocator, SlabAlloc, that suits the high performance needs of the slab hash. SlabAlloc dynamically allocates memory at a rate of 600 M allocations/s, which is up to 37x faster than alternative methods in similar scenarios. 
    more » « less
  2. We present a fast dynamic graph data structure for the GPU. Our dynamic graph structure uses one hash table per vertex to store adjacency lists and achieves 3.4–14.8x faster insertion rates over the state of the art across a diverse set of large datasets, as well as deletion speedups up to 7.8x. The data structure supports queries and dynamic updates through both edge and vertex insertion and deletion. In addition, we define a comprehensive evaluation strategy based on operations, workloads, and applications that we believe better characterize and evaluate dynamic graph data structures. 
    more » « less
  3. We revisit the problem of building static hash tables on the GPU and present an efficient implementation of bucketed hash tables. By decoupling the probing scheme from the hash table in-memory representation, we offer an implementation where the number of probes and the bucket size are the only factors limiting performance. Our analysis sweeps through the hash table parameter space for two probing schemes: cuckoo and iceberg hashing. We show that a bucketed cuckoo hash table (BCHT) that uses three hash functions outperforms alternative methods that use iceberg hashing and a cuckoo hash table that uses a bucket size of one. At load factors as high as 0.99, BCHT enjoys an average probe count of 1.43 during insertion. Using three hash functions only, positive and negative queries require at most 1.39 and 2.8 average probes per key, respectively. 
    more » « less
  4. Hash tables are a ubiquitous class of dictionary data structures. However, standard hash table implementations do not translate well into the external memory model, because they do not incorporate locality for insertions. Iacono and Pătraşu established an update/query tradeoff curve for external-hash tables: a hash table that performs insertions in O(λ/B) amortized IOs requires Ω(logλ N) expected IOs for queries, where N is the number of items that can be stored in the data structure, B is the size of a memory transfer, M is the size of memory, and λ is a tuning parameter. They provide a complicated hashing data structure, which we call the IP hash table, that meets this curve for λ that is Ω(loglogM +logM N). In this paper, we present a simpler external-memory hash table, the Bundle of Arrays Hash Table (BOA), that is optimal for a narrower range of λ. The simplicity of BOAs allows them to be readily modified to achieve the following results: A new external-memory data structure, the Bundle of Trees Hash Table (BOT), that matches the performance of the IP hash table, while retaining some of the simplicity of the BOAs. The Cache-Oblivious Bundle of Trees Hash Table (COBOT), the first cache-oblivious hash table. This data structure matches the optimality of BOTs and IP hash tables over the same range of λ. 
    more » « less
  5. In-memory data management systems, such as key-value stores, have become an essential infrastructure in today's big-data processing and cloud computing. They rely on efficient index structures to access data. While unordered indexes, such as hash tables, can perform point search with O(1) time, they cannot be used in many scenarios where range queries must be supported. Many ordered indexes, such as B+ tree and skip list, have a O(log N) lookup cost, where N is number of keys in an index. For an ordered index hosting billions of keys, it may take more than 30 key-comparisons in a lookup, which is an order of magnitude more expensive than that on a hash table. With availability of large memory and fast network in today's data centers, this O(log N) time is taking a heavy toll on applications that rely on ordered indexes. In this paper we introduce a new ordered index structure, named Wormhole, that takes O(log L) worst-case time for looking up a key with a length of L. The low cost is achieved by simultaneously leveraging strengths of three indexing structures, namely hash table, prefix tree, and B+ tree, to orchestrate a single fast ordered index. Wormhole's range operations can be performed by a linear scan of a list after an initial lookup. This improvement of access efficiency does not come at a price of compromised space efficiency. Instead, Wormhole's index space is comparable to those of B+ tree and skip list. Experiment results show that Wormhole outperforms skip list, B+ tree, ART, and Masstree by up to 8.4x, 4.9x, 4.3x, and 6.6x in terms of key lookup throughput, respectively. 
    more » « less