Pattern counting in graphs is a fundamental primitive for many network analysis tasks, and there are several methods for scaling subgraph counting to large graphs. Many real-world networks have a notion of strength of connection between nodes, which is often modeled by a weighted graph, but existing scalable algorithms for pattern mining are designed for unweighted graphs. Here, we develop deterministic and random sampling algorithms that enable the fast discovery of the 3-cliques (triangles) of largest weight, as measured by the generalized mean of the triangle’s edge weights. For example, one of our proposed algorithms can find the top-1000 weighted triangles of a weighted graph with billions of edges in thirty seconds on a commodity server, which is orders of magnitude faster than existing “fast” enumeration schemes. Our methods open the door towards scalable pattern mining in weighted graphs.
more »
« less
A Local Algorithm for Structure-Preserving Graph Cut
Nowadays, large-scale graph data is being generated in a variety of real-world applications, from social networks to co-authorship networks, from protein-protein interaction networks to road traffic networks. Many existing works on graph mining focus on the vertices and edges, with the first-order Markov chain as the underlying model. They fail to explore the high-order network structures, which are of key importance in many high impact domains. For example, in bank customer personally identifiable information (PII) networks, the star structures often correspond to a set of synthetic identities; in financial transaction networks, the loop structures may indicate the existence of money laundering. In this paper, we focus on mining user-specified high-order network structures and aim to find a structure-rich subgraph which does not break many such structures by separating the subgraph from the rest. A key challenge associated with finding a structure-rich subgraph is the prohibitive computational cost. To address this problem, inspired by the family of local graph clustering algorithms for efficiently identifying a low-conductance cut without exploring the entire graph, we propose to generalize the key idea to model high-order network structures. In particular, we start with a generic definition of high-order conductance, and define the high-order diffusion core, which is based on a high-order random walk induced by user-specified high-order network structure. Then we propose a novel High-Order Structure-Preserving LOcal Cut (HOSPLOC) algorithm, which runs in polylogarithmic time with respect to the number of edges in the graph. It starts with a seed vertex and iteratively explores its neighborhood until a subgraph with a small high-order conductance is found. Furthermore, we analyze its performance in terms of both effectiveness and efficiency. The experimental results on both synthetic graphs and real graphs demonstrate the effectiveness and efficiency of our proposed HOSPLOC algorithm.
more »
« less
- PAR ID:
- 10062449
- Date Published:
- Journal Name:
- KDD
- Page Range / eLocation ID:
- 655 to 664
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Given a user-specified minimum degree threshold γ, a γ-quasi-clique is a subgraph g = (Vg, Eg) where each vertex ν ∈ Vg connects to at least γ fraction of the other vertices (i.e., ⌈γ · (|Vg|- 1)⌉ vertices) in g. Quasi-clique is one of the most natural definitions for dense structures useful in finding communities in social networks and discovering significant biomolecule structures and pathways. However, mining maximal quasi-cliques is notoriously expensive. In this paper, we design parallel algorithms for mining maximal quasi-cliques on G-thinker, a distributed graph mining framework that decomposes mining into compute-intensive tasks to fully utilize CPU cores. We found that directly using G-thinker results in the straggler problem due to (i) the drastic load imbalance among different tasks and (ii) the difficulty of predicting the task running time. We address these challenges by redesigning G-thinker's execution engine to prioritize long-running tasks for execution, and by utilizing a novel timeout strategy to effectively decompose long-running tasks to improve load balancing. While this system redesign applies to many other expensive dense subgraph mining problems, this paper verifies the idea by adapting the state-of-the-art quasi-clique algorithm, Quick, to our redesigned G-thinker. Extensive experiments verify that our new solution scales well with the number of CPU cores, achieving 201× runtime speedup when mining a graph with 3.77M vertices and 16.5M edges in a 16-node cluster.more » « less
-
Graph Neural Networks (GNNs) are a powerful tool for machine learning on graphs. GNNs combine node feature information with the graph structure by recursively passing neural messages along edges of the input graph. However, incorporating both graph structure and feature information leads to complex models and explaining predictions made by GNNs remains unsolved. Here we propose GNNEXPLAINER, the first general, model-agnostic approach for providing interpretable explanations for predictions of any GNN-based model on any graph-based machine learning task. Given an instance, GNNEXPLAINER identifies a compact subgraph structure and a small subset of node features that have a crucial role in GNN’s prediction. Further, GNNEXPLAINER can generate consistent and concise explanations for an entire class of instances. We formulate GNNEXPLAINER as an optimization task that maximizes the mutual information between a GNN’s prediction and distribution of possible subgraph structures. Experiments on synthetic and real-world graphs show that our approach can identify important graph structures as well as node features, and outperforms alternative baseline approaches by up to 43.0% in explanation accuracy. GNNEXPLAINER provides a variety of benefits, from the ability to visualize semantically relevant structures to interpretability, to giving insights into errors of faulty GNNs.more » « less
-
Given a user-specified minimum degree threshold γ, a γ-quasi-clique is a subgraph where each vertex connects to at least γ fraction of the other vertices. Quasi-clique is a natural definition for dense structures, so finding large and hence statistically significant quasi-cliques is useful in applications such as community detection in social networks and discovering significant biomolecule structures and pathways. However, mining maximal quasi-cliques is notoriously expensive, and even a recent algorithm for mining large maximal quasi-cliques is flawed and can lead to a lot of repeated searches. This paper proposes a parallel solution for mining maximal quasi-cliques that is able to fully utilize CPU cores. Our solution utilizes divide and conquer to decompose the workloads into independent tasks for parallel mining, and we addressed the problem of (i) drastic load imbalance among different tasks and (ii) difficulty in predicting the task running time and the time growth with task subgraph size, by (a) using a timeout-based task decomposition strategy, and by (b) utilizing a priority task queue to schedule long-running tasks earlier for mining and decomposition to avoid stragglers. Unlike our conference version in PVLDB 2020 where the solution was built on a distributed graph mining framework called G-thinker, this paper targets a single-machine multi-core environment which is more accessible to an average end user. A general framework called T-thinker is developed to facilitate the programming of parallel programs for algorithms that adopt divide and conquer, including but not limited to our quasi-clique mining algorithm. Additionally, we consider the problem of directly mining large quasi-cliques from dense parts of a graph, where we identify the repeated search issue of a recent method and address it using a carefully designed concurrent trie data structure. Extensive experiments verify that our parallel solution scales well with the number of CPU cores, achieving 26.68× runtime speedup when mining a graph with 3.77M vertices and 16.5M edges with 32 mining threads. Additionally, mining large quasi-cliques from dense parts can provide an additional speedup of up to 89.46×.more » « less
-
null (Ed.)The problem of diffusion control on networks has been extensively studied, with applications ranging from marketing to controlling infectious disease. However, in many applications, such as cybersecurity, an attacker may want to attack a targeted subgraph of a network, while limiting the impact on the rest of the network in order to remain undetected. We present a model POTION in which the principal aim is to optimize graph structure to achieve such targeted attacks. We propose an algorithm POTION-ALG for solving the model at scale, using a gradient-based approach that leverages Rayleigh quotients and pseudospectrum theory. In addition, we present a condition for certifying that a targeted subgraph is immune to such attacks. Finally, we demonstrate the effectiveness of our approach through experiments on real and synthetic networks.more » « less
An official website of the United States government

