skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Unusual rearrangement of an N-heterocyclic carbene via a ring-opening and ring-closing process
The reaction of a pentadentate NHC ligand precursor with Ni(OAc) 2 ·4H 2 O or Pd(OAc) 2 in the presence of a base yields four-coordinate square-planar Ni( ii ) and Pd( ii ) complexes with an unusual ligand generated in situ . A series of experimental studies point to a ring-opening and ring-closing process via novel C–N bond cleavage and formation.  more » « less
Award ID(s):
1633870
PAR ID:
10062490
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Chemical Communications
ISSN:
1359-7345
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A series of Ni( ii ), Pd( ii ) and Pt( ii ) complexes [ML][PF 6 ] 2 [L = L 1 , M = Ni ( 1 ), Pd ( 2 ), Pt ( 3 ); L = L 2 , M = Ni ( 4 ), Pd ( 5 ), Pt ( 6 )] and [Pt(L 2 )(acac)] ( 7 ) have been prepared by the reactions of two tetradentate macrocyclic amine-NHC ligand precursors, [H 2 L 1 ][PF 6 ] 2 and [H 2 L 2 ][PF 6 ] 2 , with Ni(OAc) 2 ·4H 2 O, Pd(OAc) 2 and Pt(acac) 2 in the presence of NaOAc. Complex 7 is isolated along with 6 from the same reaction between [H 2 L 2 ][PF 6 ] 2 and Pt(acac) 2 . There are two atropisomers in 1–3 and two achiral conformers in 4–6 . The crystal structures of 1–3 and one conformer of 4–6 ( 4a–6a ) have been determined by single-crystal X-ray diffraction studies. The metal ion is found to reside in the cavity of the macrocyclic ring and adopts a square-planar configuration. Detailed NMR studies including variable-temperature NMR spectroscopy reveal a dynamic interconverting process between two atropisomers of 1–3 in the solutions via a ring twisting mechanism. Two conformers in the equilibrated solution of 4–6 , probably arising from the orientation of two amine N–H bonds with respect to the coordination plane, exchange slowly. Time-dependent 1 H NMR spectra show that one conformer ( 4a–6a ) in solution converts into the other ( 4b–6b ) via the inversion of the nitrogen atom. 
    more » « less
  2. This work centers around the nickel complexes derived from two tetrahydrosalen-type proligands: N , N ′-bis(2-hydroxybenzyl)- o -phenylenediamine (H 2 salophan) and N , N ′-bis(2-hydroxy-3-methylbenzyl)- o -phenylenediamine (H 2 salophan_Me). The reaction of H 2 salophan with Ni(OAc) 2 ·4H 2 O generates a dinuclear complex Ni 2 (Hsalophan) 2 (OAc) 2 or Na[Ni 2 (salophan) 2 (OAc)] when NaOH is added to assist ligand deprotonation. The reaction of H 2 salophan_Me with Ni(OAc) 2 ·4H 2 O, however, yields a mononuclear complex Ni(Hsalophan_Me) 2 . Unlike the corresponding salen-type nickel complexes, these tetrahydrosalen-type complexes are paramagentic and air sensitive (in solution). Oxidation by O 2 or peroxides results in dehydrogenation of the ligand backbone to form the salen-type complexes. 
    more » « less
  3. Abstract Palladium‐catalyzed aryl amination and Heck arylation reactions are complementary transformations, generally requiring a suitable catalyst combination and a base. With substrates containing both an amino group and a vinyl moiety, control of C─N versus C─C reactivity can lead to regiodivergent functionalizations. With this focus, reactions of silyl‐protected 8‐vinyl 2'‐deoxyadenosine and adenosine with aryl bromides and iodides have been studied. Pd(OAc)2, Pd2(dba)3, and preformed dichloro[1,1′‐bis(di‐t‐butylphosphino)ferrocene]palladium (II) (Pd‐118) were evaluated as metal sources. Ligands tested were Xantphos, DPEphos, BIPHEP, and DPPF, with Cs2CO3and K3PO4as bases. In toluene as solvent, the Pd(OAc)2/Xantphos/Cs2CO3combination was uniquely capable of predominantN6arylation. Aryl bromides and iodides gave comparable product yields. Replacement of Cs2CO3with K3PO4redirected arylation from the nitrogen atom to the vinyl carbon atom, and all other catalyst, ligand, and base combinations gave Cvinylarylation as well. Simply switching from Pd(OAc)2to Pd2(dba)3resulted in loss of theN6‐selectivity and Cvinylarylation was favored. Based upon these results, using two structurally similar catalytic systems sequential CvinylandN6arylations of the nucleosides were accomplished. Some of the products were converted to other novel nucleoside analogues. Because some compounds were fluorescent, their photophysical properties were assessed experimentally and computationally. 
    more » « less
  4. The purinyl nitrogen atom is an effective metalation director, which in the presence of Pd(OAc)2,t-BuOOH, and aryl aldehydes, leads to acylation of the aryl ring at the C6 position of the purine. 
    more » « less
  5. A recent advance in the synthesis of alkenylated arenes was the demonstration that the Pd(OAc)2 catalyst precursor gives >95% selectivity toward styrene from ethylene and benzene under optimized conditions using excess Cu(II) carboxylate as the in situ oxidant [ Organometallics 2019, 38(19), 3532−3541]. To understand the mechanism underlying this catalysis, we applied density functional theory (DFT) calculations in combination with experimental studies. From DFT calculations, we determined the lowest-energy multimetallic Pd and Pd–Cu mixed metal species as possible catalyst precursors. From the various structures, we determined the cyclic heterotrinuclear complex PdCu2(μ-OAc)6 to be the global minimum in Gibbs free energy under conditions of excess Cu(II). For cyclic PdCu2(μ-OAc)6 and the parent [Pd(μ-OAc)2]3, we evaluated the barriers for benzene C–H activation through concerted metalation deprotonation (CMD). The PdCu2(μ-OAc)6 cyclic trimer leads to a CMD barrier of 33.5 kcal/mol, while the [Pd(μ-OAc)2]3 species leads to a larger CMD barrier at >35 kcal/mol. This decrease in the CMD barrier arises from the insertion of Cu(II) into the trimetallic species. Because cyclic PdCu2(μ-OAc)6 is likely the predominant species under experimental conditions (the Cu to Pd ratio is 480:1 at the start of catalysis) with a predicted CMD barrier within the range of the experimentally determined activation barrier, we propose that cyclic PdCu2(μ-OAc)6 is the Pd species responsible for catalysis and report a full reaction mechanism based on DFT calculations. For catalytic conversion of benzene and ethylene to styrene at 120 °C using Pd(OAc)2 as the catalyst precursor and Cu(OPiv)2 (OPiv = pivalate) as the oxidant, an induction period of ∼1 h was observed, followed by catalysis with a turnover frequency of ∼2.3 × 10–3 s–1. In situ1H NMR spectroscopy experiments indicate that during the induction period, Pd(OAc)2 is likely converted to cyclic PdCu2(η2-C2H4)3(μ-OPiv)6, which is consistent with the calculations and consistent with the proposal that the active catalyst is the ethylene-coordinated heterotrinuclear complex cyclic PdCu2(η2-C2H4)3(μ-OPiv)6. 
    more » « less