skip to main content

Title: Self-Engaging Spined Gripper with Dynamic Penetration and Release for Steep Jumps
Due to high impact forces and low duty cycles, monopedal jumping robots are particularly susceptible to failure from a slipping foot. Spines provide a solution to reduce slip, but there has been little research on how to effectively engage them into a surface with a dynamic jumping robot. Previous robots utilizing spines operate in different regimes of surface approach speed and cycle time. For a penetrable substrate, spines must be directed into the surface at suitable holding angles, then extracted before the foot leaves the ground. We accomplished this by designing a gripper mechanism for the robot Salto that pushes in angled spines along their length and is kinematically constrained to engage/disengage with leg crouch/extension. The resulting mechanism introduces no new actuators, enables jumping on penetrable inclines up to 60 degrees and enables static adhesion to hold 7.5 times the robot’s weight from a ceiling.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE International Conference on Robotics and Automation
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Millions of years of evolution have allowed animals to develop unusual locomotion capabilities. A striking example is the legless-jumping of click beetles and trap-jaw ants, which jump more than 10 times their body length. Their delicate musculoskeletal system amplifies their muscles’ power. It is challenging to engineer insect-scale jumpers that use onboard actuators for both elastic energy storage and power amplification. Typical jumpers require a combination of at least two actuator mechanisms for elastic energy storage and jump triggering, leading to complex designs having many parts. Here, we report the new concept of dynamic buckling cascading, in which a single unidirectional actuation stroke drives an elastic beam through a sequence of energy-storing buckling modes automatically followed by spontaneous impulsive snapping at a critical triggering threshold. Integrating this cascade in a robot enables jumping with unidirectional muscles and power amplification (JUMPA). These JUMPA systems use a single lightweight mechanism for energy storage and release with a mass of 1.6 g and 2 cm length and jump up to 0.9 m, 40 times their body length. They jump repeatedly by reengaging the latch and using coiled artificial muscles to restore elastic energy. The robots reach their performance limits guided by theoretical analysis of snap-through and momentum exchange during ground collision. These jumpers reach the energy densities typical of the best macroscale jumping robots, while also matching the rapid escape times of jumping insects, thus demonstrating the path toward future applications including proximity sensing, inspection, and search and rescue. 
    more » « less
  2. Tensegrity structures made from rigid rods and elastic cables have unique characteristics, such as being lightweight, easy to fabricate, and high load-carrying to weight capacity. In this article, we leverage tensegrity structures as wheels for a mobile robot that can actively change its shape by expanding or collapsing the wheels. Besides the shape-changing capability, using tensegrity as wheels offers several advantages over traditional wheels of similar sizes, such as a shock-absorbing capability without added mass since tensegrity wheels are both lightweight and highly compliant. We show that a robot with two icosahedron tensegrity wheels can reduce its width from 400 to 180 mm, and simultaneously, increase its height from 75 to 95 mm by changing the expanded tensegrity wheels to collapsed disk-like ones. The tensegrity wheels enable the robot to overcome steps with heights up to 110 and 150 mm with the expanded and collapsed configuration, respectively. We establish design guidelines for robots with tensegrity wheels by analyzing the maximum step height that can be overcome by the robot and the force required to collapse the wheel. The robot can also jump onto obstacles up to 300-mm high with a bistable mechanism that can gradually store but quickly release energy. We demonstrate the robot's locomotion capability in indoor and outdoor environments, including various natural terrains, like sand, grass, rocks, ice, and snow. Our results suggest that using tensegrity structures as wheels for mobile robots can enhance their capability to overcome obstacles, traverse challenging terrains, and survive falls from heights. When combined with other locomotion modes (e.g., jumping), such shape-changing robots can have broad applications for search-and-rescue after disasters or surveillance and monitoring in unstructured environments. 
    more » « less
  3. Agility, robustness, endurance, and sustainability are the main challenges of the current distributed systems for ocean objects identification. Nowadays, developing a novel marine observation network to help identify threats and to provide both an early warning and data for forecasting models is a priority of marine missions. Autonomous systems, such as underwater robots and drones, can provide worthwhile information from the ocean environment; still, they have challenges associated with endurance, performance, and recovery. Skimming drones cannot be used to perform underwater missions, need a significant amount of energy to take off, and have stability problems due to the constant ocean wave motion. As for underwater swimming robots, they are generally slow and use a significant amount of energy. To this end, there is a need to design some novel bioinspired amphibious concepts that can overcome these challenges. In this paper, a network of distributed hybrid-amphibious robots with energy harvesting capabilities will be presented. This is accomplished through novel robot systems. The Lizard-Spider Octopus-Jellyfish-Rolling Robot (LSOJRR) is one of these novel ideas, which imitates the characteristics of a Golden wheel spider with rolling, jumping, and folding capabilities over the water, a Green Basilisk lizard with running capability over the water, and an octopus with unique underwater propulsion mechanism. The LSOJRR also has applications beyond Earth, and alternative designs of this robot are explored, particularly those involving the dispersal of swarms of smaller robots that also derive their design from biology. All of the designs presented in this paper draw inspiration from nature, and strive to achieve the goal of furthering the development for marine exploration. 
    more » « less
  4. Abstract

    Light has been recently intensively explored to power robots. However, most existing light‐driven robots have limited locomotion modalities, with constrained locomotion capabilities. A light‐powered soft robot with a bioinspired design is demonstrated, which can crawl on ground, squeeze its way through a small channel, and jump over a barrier. The arch‐shaped robot is made up of liquid crystal elastomer–carbon nanotube composite. When a light source with a power intensity of around 1.57 W cm−2is scanned over the surface of the robot, it deforms and crawls forward. With an increase in the light scanning speed, it can deform sufficiently to pass through a channel 25% lower than its body height. Subjected to light irradiation, it can also deform to a closed loop, gradually store elastic energy, and suddenly release it to jump over a wall or onto a step quickly, with a jumping distance around eight times its body length and jumping height around five times its body height. Mathematical models for quantitatively understanding the multimodal locomotion of this light‐powered soft robot are also presented.

    more » « less
  5. Abstract The stiffness of robot legs greatly affects legged locomotion performance; tuning that stiffness, however, can be a costly and complex task. In this paper, we directly tune the stiffness of jumping robot legs using an origami-inspired laminate design and fabrication method. In addition to the stiffness coefficient described by Hooke’s law, the nonlinearity of the force-displacement curve can also be tuned by optimizing the geometry of the mechanism. Our method reduces the number of parts needed to realize legs with different stiffness while simplifying manual redesign effort, lowering the cost of legged robots while speeding up the design and optimization process. We have fabricated and tested the leg across six different stiffness profiles that vary both the nonlinearity and coefficient. Through a vertical jumping experiment actuated by a DC motor, we also show that proper tuning of the leg stiffness can result in an 18% improvement in lift-off speed and an increase of 19% in peak power output. 
    more » « less