skip to main content

Title: Beta decay of 66 Mn to the N = 40 nucleus 66 Fe
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
1713857
Publication Date:
NSF-PAR ID:
10062614
Journal Name:
Journal of Physics G: Nuclear and Particle Physics
Volume:
44
Issue:
12
Page Range or eLocation-ID:
125103
ISSN:
0954-3899
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We reassess the 65 As(p, γ ) 66 Se reaction rates based on a set of proton thresholds of 66 Se, S p ( 66 Se), estimated from the experimental mirror nuclear masses, theoretical mirror displacement energies, and full p f -model space shell-model calculation. The self-consistent relativistic Hartree–Bogoliubov theory is employed to obtain the mirror displacement energies with much reduced uncertainty, and thus reducing the proton-threshold uncertainty up to 161 keV compared to the AME2020 evaluation. Using the simulation instantiated by the one-dimensional multi-zone hydrodynamic code, K epler , which closely reproduces the observed GS 1826−24 clocked bursts, the present forward and reverse 65 As(p, γ ) 66 Se reaction rates based on a selected S p ( 66 Se) = 2.469 ± 0.054 MeV, and the latest 22 Mg( α ,p) 25 Al, 56 Ni(p, γ ) 57 Cu, 57 Cu(p, γ ) 58 Zn, 55 Ni(p, γ ) 56 Cu, and 64 Ge(p, γ ) 65 As reaction rates, we find that though the GeAs cycles are weakly established in the rapid-proton capture process path, the 65 As(p, γ ) 66 Se reaction still strongly characterizes the burst tail end due to the two-proton sequential capturemore »on 64 Ge, not found by the Cyburt et al. sensitivity study. The 65 As(p, γ ) 66 Se reaction influences the abundances of nuclei A = 64, 68, 72, 76, and 80 up to a factor of 1.4. The new S p ( 66 Se) and the inclusion of the updated 22 Mg( α ,p) 25 Al reaction rate increases the production of 12 C up to a factor of 4.5, which is not observable and could be the main fuel for a superburst. The enhancement of the 12 C mass fraction alleviates the discrepancy in explaining the origin of the superburst. The waiting point status of and two-proton sequential capture on 64 Ge, the weak-cycle feature of GeAs at a region heavier than 64 Ge, and the impact of other possible S p ( 66 Se) are also discussed.« less
  2. We report on spectroscopic measurements on the4f76s28S7/2∘<#comment/>→<#comment/>4f7(8S∘<#comment/>)6s6p(1P∘<#comment/>)8P9/2transition in neutral europium-151 and europium-153 at 459.4 nm. The center of gravity frequencies for the 151 and 153 isotopes, reported for the first time in this paper, to our knowledge, were found to be 652,389,757.16(34) MHz and 652,386,593.2(5) MHz, respectively. The hyperfine coefficients for the6s6p(1P∘<#comment/>)8P9/2state were found to beA(151)=−<#comment/>228.84(2)MHz,B(151)=226.9(5)MHzandA(153)=−<#comment/>101.87(6)MHz,B(153)=575.4(1.5)MHz, which all agree with previously published results except for A(153), which shows a small discrepancy. The isotope shift is found to be 3163.8(6) MHz, which also has a discrepancy with previously published results.