skip to main content

Title: Entropy connects water structure and dynamics in protein hydration layer
The enzyme Candida Antarctica lipase B (CALB) serves here as a model for understanding connections among hydration layer dynamics, solvation shell structure, and protein surface structure. The structure and dynamics of water molecules in the hydration layer were characterized for regions of the CALB surface, divided around each α-helix, β-sheet, and loop structure. Heterogeneous hydration dynamics were observed around the surface of the enzyme, in line with spectroscopic observations of other proteins. Regional differences in the structure of the biomolecular hydration layer were found to be concomitant with variations in dynamics. In particular, it was seen that regions of higher density exhibit faster water dynamics. This is analogous to the behavior of bulk water, where dynamics (diffusion coefficients) are connected to water structure (density and tetrahedrality) by excess (or pair) entropy, detailed in the Rosenfeld scaling relationship. Additionally, effects of protein surface topology and hydrophobicity on water structure and dynamics were evaluated using multiregression analysis, showing that topology has a somewhat larger effect on hydration layer structure–dynamics. Concave and hydrophobic protein surfaces favor a less dense and more tetrahedral solvation layer, akin to a more ice-like structure, with slower dynamics. Results show that pairwise entropies of local hydration layers, calculated more » from regional radial distribution functions, scale logarithmically with local hydration dynamics. Thus, the Rosenfeld relationship describes the heterogeneous structure–dynamics of the hydration layer around the enzyme CALB. These findings raise the question of whether this may be a general principle for understanding the structure–dynamics of biomolecular solvation. « less
Award ID(s):
Publication Date:
Journal Name:
Physical Chemistry Chemical Physics
Page Range or eLocation-ID:
14765 to 14777
Sponsoring Org:
National Science Foundation
More Like this
  1. Zwitterionic materials are an important class of antifouling biomaterials for various applications. Despite such desirable antifouling properties, molecular-level understanding of the structure–property relationship associated with surface chemistry/topology/hydration and antifouling performance still remains to be elucidated. In this work, we computationally studied the packing structure, surface hydration, and antifouling property of three zwitterionic polymer brushes of poly(carboxybetaine methacrylate) (pCBMA), poly(sulfobetaine methacrylate) (pSBMA), and poly((2-(methacryloyloxy)ethyl)phosporylcoline) (pMPC) brushes and a hydrophilic PEG brush using a combination of molecular mechanics (MM), Monte Carlo (MC), molecular dynamics (MD), and steered MD (SMD) simulations. We for the first time determined the optimal packing structures of all polymer brushes from a wide variety of unit cells and chain orientations in a complex energy landscape. Under the optimal packing structures, MD simulations were further conducted to study the structure, dynamics, and orientation of water molecules and protein adsorption on the four polymer brushes, while SMD simulations to study the surface resistance of the polymer brushes to a protein. The collective results consistently revealed that the three zwitterionic brushes exhibited stronger interactions with water molecules and higher surface resistance to a protein than the PEG brush. It was concluded that both the carbon space length between zwitterionic groups andmore »the nature of the anionic groups have a distinct effect on the antifouling performance, leading to the following antifouling ranking of pCBMA > pMPC > pSBMA. This work hopefully provides some structural insights into the design of new antifouling materials beyond traditional PEG-based antifouling materials.« less
  2. Despite its importance in electron transfer reactions and radiation chemistry, there has been disagreement over the fundamental nature of the hydrated electron, such as whether or not it resides in a cavity. Mixed quantum/classical simulations of the hydrated electron give different structures depending on the pseudopotential employed, and ab initio models of computational necessity use small numbers of water molecules and/or provide insufficient statistics to compare to experimental observables. A few years ago, Kumar et al. (J. Phys. Chem. A 2015, 119, 9148) proposed a minimalist ab initio model of the hydrated electron with only a small number of explicitly treated water molecules plus a polarizable continuum model (PCM). They found that the optimized geometry had four waters arranged tetrahedrally around a central cavity, and that the calculated vertical detachment energy and radius of gyration agreed well with experiment, results that were largely independent of the level of theory employed. The model, however, is based on a fixed structure at 0 K and does not explicitly incorporate entropic contributions or the thermal fluctuations that should be associated with the room-temperature hydrated electron. Thus, in this paper, we extend the model of Kumar et al. by running Born−Oppenheimer molecular dynamics (BOMD)more »of a small number of water molecules with an excess electron plus PCM at room temperature. We find that when thermal fluctuations are introduced, the level of theory chosen becomes critical enough when only four waters are used that one of the waters dissociates from the cluster with certain density functionals. Moreover, even with an optimally tuned range-separated hybrid functional, at room temperature the tetrahedral orientation of the 0 K first-shell waters is entirely lost and the central cavity collapses, a process driven by the fact that the explicit water molecules prefer to make H-bonds with each other more than with the excess electron. The resulting average structure is quite similar to that produced by a noncavity mixed quantum/classical model, so that the minimalist 4-water BOMD models suffer from problems similar to those of noncavity models, such as predicting the wrong sign of the hydrated electron’s molar solvation volume. We also performed BOMD with 16 explicit water molecules plus an extra electron and PCM. We find that the inclusion of an entire second solvation shell of explicit water leads to little change in the outcome from when only four waters were used. In fact, the 16-water simulations behave much like those of water cluster anions, in which the electron localizes at the cluster surface, showing that PCM is not acceptable for use in minimalist models to describe the behavior of the bulk hydrated electron. For both the 4- and 16-water models, we investigate how the introduction of thermal motions alters the predicted absorption spectrum, vertical detachment energy, and resonance Raman spectrum of the simulated hydrated electron. We also present a set of structural criteria that can be used to numerically determine how cavity-like (or not) a particular hydrated electron model is. All of the results emphasize that the hydrated electron is a statistical object whose properties are inadequately captured using only a small number of explicit waters, and that a proper treatment of thermal fluctuations is critical to understanding the hydrated electron’s chemical and physical behavior.« less
  3. Biomolecular hydration is fundamental to biological functions. Using phase-resolved chiral sum-frequency generation spectroscopy (SFG), we probe molecular architectures and interactions of water molecules around a self-assembling antiparallel β-sheet protein. We find that the phase of the chiroptical response from the O-H stretching vibrational modes of water flips with the absolute chirality of the (l-) or (d-) antiparallel β-sheet. Therefore, we can conclude that the (d-) antiparallel β-sheet organizes water solvent into a chiral supermolecular structure with opposite handedness relative to that of the (l-) antiparallel β-sheet. We use molecular dynamics to characterize the chiral water superstructure at atomic resolution. The results show that the macroscopic chirality of antiparallel β-sheets breaks the symmetry of assemblies of surrounding water molecules. We also calculate the chiral SFG response of water surrounding (l-) and (d-) LK7β to confirm the presence of chiral water structures. Our results offer a different perspective as well as introduce experimental and computational methodologies for elucidating hydration of biomacromolecules. The findings imply potentially important but largely unexplored roles of water solvent in chiral selectivity of biomolecular interactions and the molecular origins of homochirality in the biological world.

  4. A series of experiments were conducted to investigate the melting of ice adjacent to a water-immiscible liquid layer (n-dodecane) exposed to radiation from above. The experimental setup consisted of a borosilicate container containing an ice wall and a layer of n-dodecane heated from above. In addition to tracking the movement of the melt front, Particle Image Velocimetry (PIV) and Background Oriented Schlieren (BOS) measurements were conducted on the liquid-phase . Two distinct melting regimes were found to dominate the melting process. First was the uniform melting across the contact area with the immiscible liquid layer for low radiation levels (~1 kW/m 2 ). Second was the lateral intrusion regime, where a depression near free surface of the liquid forms in ice and grows laterally for radiation level greater than ~1 kW/m 2 . The ice surface remained flat and smooth in uniform melting regime, whereas in the lateral intrusion regime a series of rivulets were formed that carved valleys on the ice. PIV measurements showed a surface flow toward the ice for all heat flux levels caused by surface-tension forces. Increase of the heat flux levels caused a transition to multi-roll structure in the flow field. This multi-roll structure, whichmore »is accompanied by a recirculation zone near the ice, increased heat transfer coefficient near the surface of the liquid causing lateral intrusion regime. BOS measurements indicated presence of density gradients below the free surface of n-dodecane and in regions near ice that are caused by local small-scale temperature gradients. The current experiments were conducted to explore the melting dynamics and to shed light on the processes that influence the ice melting. Implications of such mechanisms in a real-life scenario, i.e. oil spill in ice-infested waters, needs to be explored further by using more liquids and improved accuracy with diagnostic techniques.« less
  5. Soft anions exhibit surface activity at the air/water interface that can be probed using surface-sensitive vibrational spectroscopy, but the structural implications of this surface activity remain a matter of debate. Here, we examine the nature of anion–water interactions at the air/water interface using a combination of molecular dynamics simulations and quantum-mechanical energy decomposition analysis based on symmetry-adapted perturbation theory. Results are presented for a set of monovalent anions, including Cl−, Br−, I−, CN−, OCN−, SCN−, NO2−, NO3−, and ClOn− (n=1,2,3,4), several of which are archetypal examples of surface-active species. In all cases, we find that average anion–water interaction energies are systematically larger in bulk water although the difference (with respect to the same quantity computed in the interfacial environment) is well within the magnitude of the instantaneous fluctuations. Specifically for the surface-active species Br−(aq), I−(aq), ClO4−(aq), and SCN−(aq), and also for ClO−(aq), the charge-transfer (CT) energy is found to be larger at the interface than it is in bulk water, by an amount that is greater than the standard deviation of the fluctuations. The Cl−(aq) ion has a slightly larger CT energy at the interface, but NO3−(aq) does not; these two species are borderline cases where consensus is lacking regardingmore »their surface activity. However, CT stabilization amounts to <20% of the total induction energy for each of the ions considered here, and CT-free polarization energies are systematically larger in bulk water in all cases. As such, the role of these effects in the surface activity of soft anions remains unclear. This analysis complements our recent work suggesting that the short-range solvation structure around these ions is scarcely different at the air/water interface from what it is in bulk water. Together, these observations suggest that changes in first-shell hydration structure around soft anions cannot explain observed surface activities.« less