skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fault detection effectiveness of source test case generation strategies for metamorphic testing
Metamorphic testing is a well known approach to tackle the oracle problem in software testing. This technique requires the use of source test cases that serve as seeds for the generation of follow-up test cases. Systematic design of test cases is crucial for the test quality. Thus, source test case generation strategy can make a big impact on the fault detection effectiveness of metamorphic testing. Most of the previous studies on metamorphic testing have used either random test data or existing test cases as source test cases. There has been limited research done on systematic source test case generation for metamorphic testing. This paper provides a comprehensive evaluation on the impact of source test case generation techniques on the fault finding effectiveness of metamorphic testing. We evaluated the effectiveness of line coverage, branch coverage, weak mutation and random test generation strategies for source test case generation. The experiments are conducted with 77 methods from 4 open source code repositories. Our results show that by systematically creating source test cases, we can significantly increase the fault finding effectiveness of metamorphic testing. Further, in this paper we introduce a simple metamorphic testing tool called "METtester" that we use to conduct metamorphic testing on these methods.  more » « less
Award ID(s):
1656877
PAR ID:
10062904
Author(s) / Creator(s):
;
Date Published:
Journal Name:
3rd International Workshop on Metamorphic Testing
Page Range / eLocation ID:
2 to 9
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Simulation is widely used for validation of Register-Transfer-Level (RTL) models. While simulating with millions of random or constrained-random tests can cover majority of the functional scenarios, the number of remaining scenarios can still be huge (hundreds or thousands) in case of today's industrial designs. Hard-to-activate branches are one of the major contributors for such remaining/untested scenarios. While directed test generation techniques using formal methods are promising in activating branches, it is infeasible to apply them on large designs due to state space explosion. In this paper, we propose a fully automated and scalable approach to cover the hard-to-activate branches using concolic testing of RTL models. While application of concolic testing on hardware designs has shown some promising results in improving the overall coverage, they are not designed to activate specific targets such as uncovered corner cases and rare scenarios. This paper makes two important contributions. (1) We propose a directed test generation technique to activate a target by effective utilization of concolic testing on RTL models. (2) We develop efficient learning and clustering techniques to minimize the overlapping searches across targets to drastically reduce the overall test generation effort. 
    more » « less
  2. Summary Search‐based unit test generation, if effective at fault detection, can lower the cost of testing. Such techniques rely on fitness functions to guide the search. Ultimately, such functions represent test goals that approximate—but do not ensure—fault detection. The need to rely on approximations leads to two questions—can fitness functions produce effective tests and, if so, which should be used to generate tests?To answer these questions, we have assessed the fault‐detection capabilities of unit test suites generated to satisfy eight white‐box fitness functions on 597 real faults from the Defects4J database. Our analysis has found that the strongest indicators of effectiveness are a high level of code coverage over the targeted class and high satisfaction of a criterion's obligations. Consequently, the branch coverage fitness function is the most effective. Our findings indicate that fitness functions that thoroughly explore system structure should be used as primary generation objectives—supported by secondary fitness functions that explore orthogonal, supporting scenarios. Our results also provide further evidence that future approaches to test generation should focus on attaining higher coverage of private code and better initialization and manipulation of class dependencies. 
    more » « less
  3. In machine learning, supervised classifiers are used to obtain predictions for unlabeled data by inferring prediction functions using labeled data. Supervised classifiers are widely applied in domains such as computational biology, computational physics and healthcare to make critical decisions. However, it is often hard to test supervised classifiers since the expected answers are unknown. This is commonly known as the oracle problem and metamorphic testing (MT) has been used to test such programs. In MT, metamorphic relations (MRs) are developed from intrinsic characteristics of the software under test (SUT). These MRs are used to generate test data and to verify the correctness of the test results without the presence of a test oracle. Effectiveness of MT heavily depends on the MRs used for testing. In this paper we have conducted an extensive empirical study to evaluate the fault detection effectiveness of MRs that have been used in multiple previous studies to test supervised classifiers. Our study uses a total of 709 reachable mutants generated by multiple mutation engines and uses data sets with varying characteristics to test the SUT. Our results reveal that only 14.8% of these mutants are detected using the MRs and that the fault detection effectiveness of these MRs do not scale with the increased number of mutants when compared to what was reported in previous studies. 
    more » « less
  4. null (Ed.)
    The feedback provided by current testing education tools about the deficiencies in a student’s test suite either mimics industry code coverage tools or lists specific instructor test cases that are missing from the student’s test suite. While useful in some sense, these types of feedback are akin to revealing the solution to the problem, which can inadvertently encourage students to pursue a trial-and-error approach to testing, rather than using a more systematic approach that encourages learning. In addition to not teaching students why their test suite is inadequate, this type of feedback may motivate students to become dependent on the feedback rather than thinking for themselves. To address this deficiency, there is an opportunity to investigate alternative feedback mechanisms that include a positive reinforcement of testing concepts. We argue that using an inquiry-based learning approach is better than simply providing the answers. To facilitate this type of learning, we present Testing Tutor, a web-based assignment submission platform that supports different levels of testing pedagogy via a customizable feedback engine. We evaluated the impact of the different types of feedback through an empirical study in two sophomore-level courses.We use Testing Tutor to provide students with different types of feedback, either traditional detailed code coverage feedback or inquiry-based learning conceptual feedback, and compare the effects. The results show that students that receive conceptual feedback had higher code coverage (by different measures), fewer redundant test cases, and higher programming grades than the students who receive traditional code coverage feedback. 
    more » « less
  5. Random-based approaches and heuristics are commonly used in kernel concurrency testing due to the massive scale of modern kernels and corresponding interleaving space. The lack of accurate and scalable approaches to analyze concurrent kernel executions makes existing testing approaches heavily rely on expensive dynamic executions to measure the effectiveness of a new test. Unfortunately, the high cost incurred by dynamic executions limits the breadth of the exploration and puts latency pressure on finding effective concurrent test inputs and schedules, hindering the overall testing effectiveness. This paper proposes Snowcat, a kernel concurrency testing framework that generates effective test inputs and schedules using a learned kernel block-coverage predictor. Using a graph neural network, the coverage predictor takes a concurrent test input and scheduling hints and outputs a prediction on whether certain important code blocks will be executed. Using this predictor, Snowcat can skip concurrent tests that are likely to be fruitless and prioritize the promising ones for actual dynamic execution. After testing the Linux kernel for over a week, Snowcat finds ~17% more potential data races, by prioritizing tests of more fruitful schedules than existing work would have chosen. Snowcat can also find effective test inputs that expose new concurrency bugs with higher probability (1.4×~2.6×), or reproduce known bugs more quickly (15×) than state-of-art testing tools. More importantly, Snowcat is shown to be more efficient at reaching a desirable level of race coverage in the continuous setting, as the Linux kernel evolves from version to version. In total, Snowcat discovered 17 new concurrency bugs in Linux kernel 6.1, of which 13 are confirmed and 6 are fixed. 
    more » « less