skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamic Inference of Likely Metamorphic Properties to Support Differential Testing
Metamorphic testing is an advanced technique to test programs without a true test oracle such as machine learning applications. Because these programs have no general oracle to identify their correctness, traditional testing techniques such as unit testing may not be helpful for developers to detect potential bugs. This paper presents a novel system, KABU, which can dynamically infer properties of methods' states in programs that describe the characteristics of a method before and after transforming its input. These Metamorphic Properties (MPs) are pivotal to detecting potential bugs in programs without test oracles, but most previous work relies solely on human effort to identify them and only considers MPs between input parameters and output result (return value) of a program or method. This paper also proposes a testing concept, Metamorphic Differential Testing (MDT). By detecting different sets of MPs between different versions for the same method, KABU reports potential bugs for human review. We have performed a preliminary evaluation of KABU by comparing the MPs detected by humans with the MPs detected by KABU. Our preliminary results are promising: KABU can find more MPs than human developers, and MDT is effective at detecting function changes in methods.  more » « less
Award ID(s):
1302269 1161079
PAR ID:
10112172
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
10th IEEE/ACM International Workshop on Automation of Software Test (AST)
Page Range / eLocation ID:
55 to 59
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bounded-exhaustive testing (BET), which exercises a program under test for all inputs up to some bounds, is an effective method for detecting software bugs. Systematic property-based testing is a BET approach where developers write test generation programs that describe properties of test inputs. Hybrid test generation programs offer the most expressive way to write desired properties by freely combining declarative filters and imperative generators. However, exploring hybrid test generation programs, to obtain test inputs, is both computationally demanding and challenging to parallelize. We present the first programming and execution models, dubbed Tempo, for parallel exploration of hybrid test generation programs. We describe two different strategies for mapping the computation to parallel hardware and implement them both for GPUs and CPUs. We evaluated Tempo by generating instances of various data structures commonly used for benchmarking in the BET domain. Additionally, we generated CUDA programs to stress test CUDA compilers, finding four bugs confirmed by the developers. 
    more » « less
  2. In machine learning, supervised classifiers are used to obtain predictions for unlabeled data by inferring prediction functions using labeled data. Supervised classifiers are widely applied in domains such as computational biology, computational physics and healthcare to make critical decisions. However, it is often hard to test supervised classifiers since the expected answers are unknown. This is commonly known as the oracle problem and metamorphic testing (MT) has been used to test such programs. In MT, metamorphic relations (MRs) are developed from intrinsic characteristics of the software under test (SUT). These MRs are used to generate test data and to verify the correctness of the test results without the presence of a test oracle. Effectiveness of MT heavily depends on the MRs used for testing. In this paper we have conducted an extensive empirical study to evaluate the fault detection effectiveness of MRs that have been used in multiple previous studies to test supervised classifiers. Our study uses a total of 709 reachable mutants generated by multiple mutation engines and uses data sets with varying characteristics to test the SUT. Our results reveal that only 14.8% of these mutants are detected using the MRs and that the fault detection effectiveness of these MRs do not scale with the increased number of mutants when compared to what was reported in previous studies. 
    more » « less
  3. null (Ed.)
    Persistent Memory (PM) can be used by applications to directly and quickly persist any data structure, without the overhead of a file system. However, writing PM applications that are simultaneously correct and efficient is challenging. As a result, PM applications contain correctness and performance bugs. Prior work on testing PM systems has low bug coverage as it relies primarily on extensive test cases and developer annotations. In this paper we aim to build a system for more thoroughly testing PM applications. We inform our design using a detailed study of 63 bugs from popular PM projects. We identify two application-independent patterns of PM misuse which account for the majority of bugs in our study and can be detected automatically. The remaining application-specific bugs can be detected using compact custom oracles provided by developers. We then present AGAMOTTO, a generic and extensible system for discovering misuse of persistent memory in PM applications. Unlike existing tools that rely on extensive test cases or annotations, AGAMOTTO symbolically executes PM systems to discover bugs. AGAMOTTO introduces a new symbolic memory model that is able to represent whether or not PM state has been made persistent. AGAMOTTO uses a state space exploration algorithm, which drives symbolic execution towards program locations that are susceptible to persistency bugs. AGAMOTTO has so far identified 84 new bugs in 5 different PM applications and frameworks while incurring no false positives. 
    more » « less
  4. Software testing is difficult to automate, especially in programs which have no oracle, or method of determining which output is correct. Metamorphic testing is a solution this problem. Metamorphic testing uses metamorphic relations to define test cases and expected outputs. A large amount of time is needed for a domain expert to determine which metamorphic relations can be used to test a given program. Metamorphic relation prediction removes this need for such an expert. We propose a method using semi-supervised machine learning to detect which metamorphic relations are applicable to a given code base. We compare this semi-supervised model with a supervised model, and show that the addition of unlabeled data improves the classification accuracy of the MR prediction model. 
    more » « less
  5. Testing scientific software is a difficult task due to their inherent complexity and the lack of test oracles. In addition, these software systems are usually developed by end-user developers who are not normally trained as professional software developers nor testers. These factors often lead to inadequate testing. Metamorphic testing (MT) is a simple yet effective testing technique for testing such applications. Even though MT is a well known technique in the software testing community, it is not very well utilized by the scientific software developers. The objective of this paper is to present MT as an effective technique for testing scientific software. To this end, we discuss why MT is an appropriate testing technique for scientists and engineers who are not primarily trained as software developers. Specifically, how it can be used to conduct systematic and effective testing on programs that do not have test oracles without requiring additional testing tools. 
    more » « less