Recent years have seen growing recognition of the importance of enabling K-12 students to learn computer science. Meanwhile, artificial intelligence, a field of computer science, has with the potential to profoundly reshape society. This has generated increasing demand for fostering an AI-literate populace. However, there is little work exploring how to introduce K-12 students to AI and how to support K-12 teachers in integrating AI into their classrooms. In this work, we explore how to introduce AI learning experiences into upper elementary classrooms (student ages 8 to 11). With a focus on integrating AI and life science, we present initial work on a collaborative game-based learning environment that features rich problem-based learning scenarios that enable students to gain experience with AI applied toward solving real-world life-science problems.
more »
« less
“I Think We Should...”: Analyzing Elementary Students’ Collaborative Processes for Giving and Taking Suggestions
Collaboration plays an essential role in computer science. While there is growing recognition that learners of all ages can benefit from collaborative learning, little is known about how elementary age children engage in collaborative problem solving in computer science. This paper reports on the analysis of a dataset of elementary students collaborating on a programming project. We found that children tend to make several different types of suggestions. In turn, their partners address those suggestions in different ways such as by implementing them directly in code or by replying through dialogue. We observe that students regularly accept or reject suggestions without explanation or explicit acknowledgement and that it is often unclear whether they understand the substance of the suggestion. These behaviors may inhibit the development of a shared understanding between the partners and limit the value of the collaborative process. These results can inform instructional practice and the development of new adaptive tools that facilitate productive collaborative problem solving in computer science.
more »
« less
- Award ID(s):
- 1721160
- PAR ID:
- 10062938
- Date Published:
- Journal Name:
- Proceedings of the Annual SIGCSE Conference on Innovation and Technology in Computer Science Education
- ISSN:
- 1931-0536
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)In successful collaborative paradigms such as pair programming, students engage in productive dialogue and work to resolve con- flicts as they arise. However, little is known about how elementary students engage in collaborative dialogue for computer science learning. Early findings indicate that these younger students may struggle to manage conflicts that arise during pair programming. To investigate collaborative dialogue that elementary learners use and the conflicts that they encounter, we analyzed videos of twelve pairs of fifth grade students completing pair programming activities. We developed a novel annotation scheme with a focus on collab- orative dialogue and conflicts. We found that student pairs used best-practice dialogue moves such as self-explanation, question generation, uptake, and praise in less than 23% of their dialogue. High-conflict pairs antagonized their partner, whereas this behav- ior was not observed with low-conflict pairs. We also observed more praise (e.g., “We did it!”) and uptake (e.g., “Yeah and. . . ”) in low-conflict pairs than high-conflict pairs. All pairs exhibited some conflicts about the task, but high-conflict pairs also engaged in conflicts about control of the computer and their partner’s con- tributions. The results presented here provide insights into the collaborative process of young learners in CS problem solving, and also hold implications for educators as we move toward building learning environments that support students in this context.more » « less
-
Moving among levels of abstraction is an important skill in mathematics and computer science, and students show similar difficulties when applying abstraction in each discipline. While computer science educators have examined ways to explicitly teach students how to consciously navigate levels of abstraction, these ideas have not been explored in mathematics education. In this study, we examined elementary students’ solutions to a commonplace mathematics task to determine whether and how students moved among levels of abstraction as they solved the task. Furthermore, we analyzed student errors, categorizing them according to whether they related to moves among levels of abstraction or to purely mathematical steps. Our analysis showed: (1) students implicitly shift among levels of abstraction when solving “real- world” mathematics problems; (2) students make errors when making those implicit shifts in abstraction level; (3) the errors students make in abstraction outnumber the errors they make in purely mathematical skills. We discuss the implications for these findings, arguing they establish that there are opportunities for explicit instruction in abstraction in elementary mathematics, and that students’ overall mathematics achievement and problem-solving skills have the potential to benefit from applying these computer-science ideas to mathematics instruction.more » « less
-
Incorporating computational thinking (CT) ideas into core subjects, such as mathematics and science, is one way of bringing early computer science (CS) education into elementary school. Minimal research has explored how teachers can translate their knowledge of CT into practice to create opportunities for their students to engage in CT during their math and science lessons. Such information can support the creation of quality professional development experiences for teachers. We analyzed how eight elementary teachers created opportunities for their students to engage in four CT practices (abstraction, decomposition, debugging, and patterns) during unplugged mathematics and science activities. We identified three strategies used by these teachers to create CT opportunities for their students: framing, prompting, and inviting reflection. Further, we grouped teachers into four profiles of implementation according to how they used these three strategies. We call the four profiles (1) presenting CT as general problem-solving strategies, (2) using CT to structure lessons, (3) highlighting CT through prompting, and (4) using CT to guide teacher planning. We discuss the implications of these results for professional development and student experiences.more » « less
-
There is a currently a shortage of computer science professionals and this shortage is projected to continue into the foreseeable future as not enough students are selecting computer science majors. Researchers and policy-makers agree that development of this career pipeline starts in elementary school. Our study examined which collaborative programming setup, pair programming (two students collaborate on one computer) or side-by-side programming (two students collaborate on the same program from two computers), fifth-grade students preferred. We also sought to understand why students preferred one method over the other and explored ideas on how to effectively design a collaborative programming environment for this age group. Our study had participants first engage in five instructional days, alternating between pair and side-by-side programming, and then conducted focus groups. We found that students overwhelmingly preferred side-by-side programming. We explain this using self-determination theory which states that behavior is motivated by three psychological needs: autonomy, competence, and psychological relatedness which side-by-side programming was better able to meet.more » « less
An official website of the United States government

