skip to main content

Title: “I Think We Should...”: Analyzing Elementary Students’ Collaborative Processes for Giving and Taking Suggestions
Collaboration plays an essential role in computer science. While there is growing recognition that learners of all ages can benefit from collaborative learning, little is known about how elementary age children engage in collaborative problem solving in computer science. This paper reports on the analysis of a dataset of elementary students collaborating on a programming project. We found that children tend to make several different types of suggestions. In turn, their partners address those suggestions in different ways such as by implementing them directly in code or by replying through dialogue. We observe that students regularly accept or reject suggestions without explanation or explicit acknowledgement and that it is often unclear whether they understand the substance of the suggestion. These behaviors may inhibit the development of a shared understanding between the partners and limit the value of the collaborative process. These results can inform instructional practice and the development of new adaptive tools that facilitate productive collaborative problem solving in computer science.
Authors:
; ; ;
Award ID(s):
1721160
Publication Date:
NSF-PAR ID:
10062938
Journal Name:
Proceedings of the Annual SIGCSE Conference on Innovation and Technology in Computer Science Education
ISSN:
1931-0536
Sponsoring Org:
National Science Foundation
More Like this
  1. In successful collaborative paradigms such as pair programming, students engage in productive dialogue and work to resolve con- flicts as they arise. However, little is known about how elementary students engage in collaborative dialogue for computer science learning. Early findings indicate that these younger students may struggle to manage conflicts that arise during pair programming. To investigate collaborative dialogue that elementary learners use and the conflicts that they encounter, we analyzed videos of twelve pairs of fifth grade students completing pair programming activities. We developed a novel annotation scheme with a focus on collab- orative dialogue and conflicts. We found that student pairs used best-practice dialogue moves such as self-explanation, question generation, uptake, and praise in less than 23% of their dialogue. High-conflict pairs antagonized their partner, whereas this behav- ior was not observed with low-conflict pairs. We also observed more praise (e.g., “We did it!”) and uptake (e.g., “Yeah and. . . ”) in low-conflict pairs than high-conflict pairs. All pairs exhibited some conflicts about the task, but high-conflict pairs also engaged in conflicts about control of the computer and their partner’s con- tributions. The results presented here provide insights into the collaborative process of young learners in CSmore »problem solving, and also hold implications for educators as we move toward building learning environments that support students in this context.« less
  2. Background and Context: Students’ self-efficacy toward computing affect their participation in related tasks and courses. Self- efficacy is likely influenced by students’ initial experiences and exposure to computer science (CS) activities. Moreover, student interest in a subject likely informs their ability to effectively regulate their learning in that domain. One way to enhance interest in CS is through using collaborative pair programming. Objective: We wanted to explore upper elementary students’ self- efficacy for and conceptual understanding of CS as manifest in collaborative and regulated discourse during pair programming. Method: We implemented a five-week CS intervention with 4th and 5th grade students and collected self-report data on students’ CS attitudes and conceptual understanding, as well as transcripts of dyads talking while problem solving on a pair programming task. Findings: The students’ self-report data, organized by dyad, fell into three categories based on the dyad’s CS self-efficacy and conceptual understanding scores. Findings from within- and cross-case analyses revealed a range of ways the dyads’ self-efficacy and CS conceptual understanding affected their collaborative and regulated discourse. Implications: Recommendations for practitioners and researchers are provided. We suggest that upper elementary students learn about productive disagreement and how to peer model. Additionally, our findings maymore »help practitioners with varied ways to group their students.« less
  3. Incorporating computational thinking (CT) ideas into core subjects, such as mathematics and science, is one way of bringing early computer science (CS) education into elementary school. Minimal research has explored how teachers can translate their knowledge of CT into practice to create opportunities for their students to engage in CT during their math and science lessons. Such information can support the creation of quality professional development experiences for teachers. We analyzed how eight elementary teachers created opportunities for their students to engage in four CT practices (abstraction, decomposition, debugging, and patterns) during unplugged mathematics and science activities. We identified three strategies used by these teachers to create CT opportunities for their students: framing, prompting, and inviting reflection. Further, we grouped teachers into four profiles of implementation according to how they used these three strategies. We call the four profiles (1) presenting CT as general problem-solving strategies, (2) using CT to structure lessons, (3) highlighting CT through prompting, and (4) using CT to guide teacher planning. We discuss the implications of these results for professional development and student experiences.
  4. Recent years have seen growing recognition of the importance of enabling K-12 students to learn computer science. Meanwhile, artificial intelligence, a field of computer science, has with the potential to profoundly reshape society. This has generated increasing demand for fostering an AI-literate populace. However, there is little work exploring how to introduce K-12 students to AI and how to support K-12 teachers in integrating AI into their classrooms. In this work, we explore how to introduce AI learning experiences into upper elementary classrooms (student ages 8 to 11). With a focus on integrating AI and life science, we present initial work on a collaborative game-based learning environment that features rich problem-based learning scenarios that enable students to gain experience with AI applied toward solving real-world life-science problems.
  5. In September 2019, the fourth and final workshop on the Future of Mechatronics and Robotics Education (FoMRE) was held at a Lawrence Technological University in Southfield, MI. This workshop was organized by faculty at several universities with financial support from industry partners and the National Science Foundation. The purpose of the workshops was to create a cohesive effort among mechatronics and robotics courses, minors and degree programs. Mechatronics and Robotics Engineering (MRE) is an integration of mechanics, controls, electronics, and software, which provides a unique opportunity for engineering students to function on multidisciplinary teams. Due to its multidisciplinary nature, it attracts diverse and innovative students, and graduates better-prepared professional engineers. In this fast growing field, there is a great need to standardize educational material and make MRE education more widely available and easier to adopt. This can only be accomplished if the community comes together to speak with one clear voice about not only the benefits, but also the best ways to teach it. These efforts would also aid in establishing more of these degree programs and integrating minors or majors into existing computer science, mechanical engineering, or electrical engineering departments. The final workshop was attended by approximately 50 practitionersmore »from industry and academia. Participants identified many practical skills required for students to succeed in an MRE curriculum and as practicing engineers after graduation. These skills were then organized into the following categories: professional, independent learning, controller design, numerical simulation and analysis, electronics, software development, and system design. For example, professional skills include technical reports, presentations, and documentation. Independent learning includes reading data sheets, performing internet searches, doing a literature review, and having a maker mindset. Numerical simulation skills include understanding data, presenting data graphically, solving and simulating in software such as MATLAB, Simulink and Excel. Controller design involves selecting a controller, tuning a controller, designing to meet specifications, and understanding when the results are good enough. Electronics skills include selecting sensors, interfacing sensors, interfacing actuators, creating printed circuit boards, wiring on a breadboard, soldering, installing drivers, using integrated circuits, and using microcontrollers. Software development of embedded systems includes agile program design, state machines, analyzing and evaluating code results, commenting code, troubleshooting, debugging, AI and machine learning. Finally, system design includes prototyping, creating CAD models, design for manufacturing, breaking a system down into subsystems, integrating and interfacing subcomponents, having a multidisciplinary perspective, robustness, evaluating tradeoffs, testing, validation, and verification, failure, effect, and mode analysis. A survey was prepared and sent out to the participants from all four workshops as well as other robotics faculty, researchers and industry personnel in order to elicit a broader community response. Because one of the biggest challenges in mechatronics and robotics education is the absence of standardized curricula, textbooks, platforms, syllabi, assignments, and learning outcomes, this was a vital part of the process to achieve some level of consensus. This paper presents an introduction to MRE education, related work on existing programs, methods, results of the practical skills survey, and then draws conclusions based upon these results. It aims to create the foundation for standardizing the development of student skills in mechatronics and robotics curricula across institutions, disciplines, majors and minors. The survey was completed by 94 participants and it was clear that there is a consensus that the primary skills students should have upon completion of MRE courses or a program is a broader multidisciplinary systems-level perspective, an ability to problem solve, and an ability to design a system to meet specifications.« less