skip to main content

The optical resonances of the silicon nanopost array patterned on a silicon-on-insulator (SOI) substrate have been investigated. The fabricated device supports optical resonances in the range of 1.55 μm with a variable Q factor depending on the angle of incidence. By sealing the device on top of the nanoposts, we demonstrated a lateral flow-through label-free biosensor built on SOI. The biosensor exhibits the refractive index sensitivity of 800 nm/RIU and the femtomolar sensitivity for detection of a breast cancer biomarker (ErbB2).  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
21st International Conference on Miniaturized Systems for Chemistry and Life Sciences October 22-26, 2017, Savannah, Georgia, USA
Page Range / eLocation ID:
565 - 566
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we demonstrated the design and experimental results of the near-infrared lab-on-a-chip optical biosensor platform that monolithically integrates the MRR and the on-chip spectrometer on the silicon-on-insulator (SOI) wafer, which can eliminate the external optical spectrum analyzer for scanning the wavelength spectrum. The symmetric add-drop MRR biosensor is designed to have a free spectral range (FSR) of ∼19 nm and a bulk sensitivity of ∼73 nm/RIU; then the drop-port output resonance peaks are reconstructed from the integrated spatial-heterodyne Fourier transform spectrometer (SHFTS) with the spectral resolution of ∼3.1 nm and the bandwidth of ∼50 nm, which results in the limit of detection of 0.042 RIU.

    more » « less
  2. The rapid growth of point-of-care tests demands for biomolecule sensors with higher sensitivity and smaller size. We developed an optofluidic metasurface that combined silicon photonics and nanofluidics to achieve a lateral flow-through biosensor to fulfill the needs. The metasurface consists of a 2D array of silicon nanoposts fabricated on a silicon-on-insulator substrate. The device takes advantage of the high-Q resonant modes associated with the optical bound state and the nanofluidic delivery of analyte to overcome the problem of diffusion-limited detection that occurs in almost all conventional biosensors and offer a high refractive index sensitivity. We used rigorous coupled wave analysis and finite element analysis to design and optimize the device. We will present its photonic band diagram to identify the optical bound state and high-Q resonance modes near 1550 nm. The device was fabricated using e-beam lithography followed by a lift-off and reactive ion etching process. Reflectance of the sensor was measured using a tunable laser and a photodetector. The preliminary result shows a refractive index sensitivity of 720 nm/RIU. Furthermore, we implemented the optical metasurface as a lateral flow-through biosensor by covering the nanoposts using a PDMS cover. The nanofluidic channels are formed between the nanoposts for the flow of samples. The lateral flow-through sensor was used to detect the epidermal growth factor receptor (ErbB2), a widely used protein biomarker for breast cancer screening. The results show that the device can quantitatively measure the binding of ErBb2 antibody and ErBb2 by the continuous monitoring of the resonant wavelength shift. 
    more » « less
  3. We demonstrated the design and experimental results of the near-infrared lab-on-a-chip optical biosensor platform that monolithically integrates the micro-ring-resonator and the on-chip spectrometer on the SOI wafer with the limit of detection of 0.042 RIU.

    more » « less
  4. null (Ed.)
    Fabricating localized silicon-on-insulator (LSOI) on bulk silicon eliminates the need for using expensive SOI wafers for silicon waveguides and MEMS applications. One of the most important building blocks in silicon photonics is optical waveguide, which usually consists of silicon surrounded by silicon dioxide with refractive indices of 3.5 and 1.5, respectively. It was observed that the SOI wafer puts restrictions on the integration of electronics and photonics because the buried oxide is too thin for field confinement. Hence, fabrication of LSOI in standard silicon wafers is considered to have precise control of the oxide thickness which will lead to effective integration of electronic and photonic devices. We used rhombus-shaped channel method in the fabrication of LSOI structure that can be produced on any part of a bulk silicon wafer. 
    more » « less
  5. Crocombe, Richard A. ; Profeta, Luisa T. (Ed.)
    We experimentally demonstrate a compact Fourier Transform on-chip spectrometer based on spatially heterodyned array of Michelson interferometers (MIs) in a silicon-on-insulator (SOI) platform. We demonstrate that with the same progressive geometric path length difference between the spatially heterodyned arrayed interferometer arms, MIs double the optical phase delays and thus double the wavelength resolution (δλ=0.8nm) compared to Mach-Zehnder interferometers (MZIs) (δλ=1.6nm). Our proof-of-concept device demonstrates one method to address the bandwidth-resolution tradeoff inherent in on-chip FTIRs, which gains in significance for optical sensing applications requiring single digit picometers resolution in compact on-chip form factors 
    more » « less