Bioelectronic devices and components made from soft, polymer-based and hybrid electronic materials form natural interfaces with the human body. Advances in the molecular design of stretchable dielectric, conducting and semiconducting polymers, as well as their composites with various metallic and inorganic nanoscale or microscale materials, have led to more unobtrusive and conformal interfaces with tissues and organs. Nonetheless, technical challenges associated with functional performance, stability and reliability of integrated soft bioelectronic systems still remain. This Review discusses recent progress in biomedical applications of soft organic and hybrid electronic materials, device components and integrated systems for addressing these challenges. We first discuss strategies for achieving soft and stretchable devices, highlighting molecular and materials design concepts for incorporating intrinsically stretchable functional materials. We next describe design strategies and considerations on wearable devices for on-skin sensing and prostheses. Moving beneath the skin, we discuss advances in implantable devices enabled by materials and integrated devices with tissue-like mechanical properties. Finally, we summarize strategies used to build standalone integrated systems and whole-body networks to integrate wearable and implantable bioelectronic devices with other essential components, including wireless communication units, power sources, interconnects and encapsulation.
more »
« less
3D Hybrid Small Scale Devices
Abstract Interfacing nano/microscale elements with biological components in 3D contexts opens new possibilities for mimicry, bionics, and augmentation of organismically and anatomically inspired materials. Abiotic nanoscale elements such as plasmonic nanostructures, piezoelectric ribbons, and thin film semiconductor devices interact with electromagnetic fields to facilitate advanced capabilities such as communication at a distance, digital feedback loops, logic, and memory. Biological components such as proteins, polynucleotides, cells, and organs feature complex chemical synthetic networks that can regulate growth, change shape, adapt, and regenerate. Abiotic and biotic components can be integrated in all three dimensions in a well‐ordered and programmed manner with high tunability, versatility, and resolution to produce radically new materials and hybrid devices such as sensor fabrics, anatomically mimetic microfluidic modules, artificial tissues, smart prostheses, and bionic devices. In this critical Review, applications of small scale devices in 3D hybrid integration, biomicrofluidics, advanced prostheses, and bionic organs are discussed.
more »
« less
- Award ID(s):
- 1709349
- PAR ID:
- 10063142
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Small
- Volume:
- 14
- Issue:
- 27
- ISSN:
- 1613-6810
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Bio-hybrid devices, combining electronic and photonic components with cells, tissues, and organs, hold potential for advancing our understanding of biology, physiology, and pathologies and for treating a wide range of conditions and diseases. In this review, I describe the devices, materials, and technologies that enable bio-hybrid devices and provide examples of their utilization at multiple biological scales ranging from the subcellular to whole organs. Finally, I describe the outcomes of a National Science Foundation (NSF)–funded workshop envisioning potential applications of these technologies to improve health outcomes and quality of life.more » « less
-
Abstract Living creatures are continuous sources of inspiration for designing synthetic materials. However, living creatures are typically different from synthetic materials because the former consist of living cells to support their growth and regeneration. Although natural systems can grow materials with sophisticated microstructures, how to harness living cells to grow materials with predesigned microstructures in engineering systems remains largely elusive. Here, an attempt to exploit living bacteria and 3D‐printed materials to grow bionic mineralized composites with ordered microstructures is reported. The bionic composites exhibit outstanding specific strength and fracture toughness, which are comparable to natural composites, and exceptional energy absorption capability superior to both natural and artificial counterparts. This report opens the door for 3D‐architectured hybrid synthetic–living materials with living ordered microstructures and exceptional properties.more » « less
-
Abstract Objective. Advanced robotic lower limb prostheses are mainly controlled autonomously. Although the existing control can assist cyclic movements during locomotion of amputee users, the function of these modern devices is still limited due to the lack of neuromuscular control (i.e. control based on human efferent neural signals from the central nervous system to peripheral muscles for movement production). Neuromuscular control signals can be recorded from muscles, called electromyographic (EMG) or myoelectric signals. In fact, using EMG signals for robotic lower limb prostheses control has been an emerging research topic in the field for the past decade to address novel prosthesis functionality and adaptability to different environments and task contexts. The objective of this paper is to review robotic lower limb Prosthesis control via EMG signals recorded from residual muscles in individuals with lower limb amputations. Approach. We performed a literature review on surgical techniques for enhanced EMG interfaces, EMG sensors, decoding algorithms, and control paradigms for robotic lower limb prostheses. Main results. This review highlights the promise of EMG control for enabling new functionalities in robotic lower limb prostheses, as well as the existing challenges, knowledge gaps, and opportunities on this research topic from human motor control and clinical practice perspectives. Significance. This review may guide the future collaborations among researchers in neuromechanics, neural engineering, assistive technologies, and amputee clinics in order to build and translate true bionic lower limbs to individuals with lower limb amputations for improved motor function.more » « less
-
Significant advances in bionic prosthetics have occurred in the past two decades. The field's rapid expansion has yielded many exciting technologies that can enhance the physical, functional, and cognitive integration of a prosthetic limb with a human. We review advances in the engineering of prosthetic devices and their interfaces with the human nervous system, as well as various surgical techniques for altering human neuromusculoskeletal systems for seamless human–prosthesis integration. We discuss significant advancements in research and clinical translation, focusing on upper limbprosthetics since they heavily rely on user intent for daily operation, although many discussed technologies have been extended to lower limb prostheses as well. In addition, our review emphasizes the roles of advanced prosthetics technologies in complex interactions with humans and the technology readiness levels (TRLs) of individual research advances. Finally, we discuss current gaps and controversies in the field and point out future research directions, guided by TRLs.more » « less
An official website of the United States government
