skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Integrating Upper-Limb Prostheses with the Human Body: Technology Advances, Readiness, and Roles in Human–Prosthesis Interaction
Significant advances in bionic prosthetics have occurred in the past two decades. The field's rapid expansion has yielded many exciting technologies that can enhance the physical, functional, and cognitive integration of a prosthetic limb with a human. We review advances in the engineering of prosthetic devices and their interfaces with the human nervous system, as well as various surgical techniques for altering human neuromusculoskeletal systems for seamless human–prosthesis integration. We discuss significant advancements in research and clinical translation, focusing on upper limbprosthetics since they heavily rely on user intent for daily operation, although many discussed technologies have been extended to lower limb prostheses as well. In addition, our review emphasizes the roles of advanced prosthetics technologies in complex interactions with humans and the technology readiness levels (TRLs) of individual research advances. Finally, we discuss current gaps and controversies in the field and point out future research directions, guided by TRLs.  more » « less
Award ID(s):
1954587
PAR ID:
10635025
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
https://www.annualreviews.org/
Date Published:
Journal Name:
Annual Review of Biomedical Engineering
Volume:
26
Issue:
1
ISSN:
1523-9829
Page Range / eLocation ID:
503 to 528
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Objective: The purpose of this paper is to briefly describe the initial stages of our efforts towards the development of easy to manufacture, low-cost, three-dimensional (3D) printed prosthetics. Specifically, here we describe the design of an upper-limb prosthetic for youths. When private insurance and public funding are insufficient, financial resources are limiting factors in obtaining quality prosthetics for the amputee. The need for cost-effective, economical solutions for prosthetics is particularly important for children in that they frequently outgrow them and costs are prohibitively expensive. Thus, 3D printed prosthetics may pose as a potential solution. In parallel to the above objective, additive manufacturing (or 3D printing) knowledge and training, within the rapidly growing field of Biomedical Engineering (or BME), is becoming increasingly important, in that it may provide solutions for numerous medically-related applications. As such, it is imperative that 3D printing exposure be incorporated, for research-based, as well as experiential project-based, contexts. Methods: Well-known mechanical design processes and quality function deployment were implemented here to design a prosthetic that could aid youths suffering from upper-limb loss. Computer-generated designs were used to in conjunction with a Cubify 3D printer to create the prosthetic hand components. Results: A simple, accessible, affordable design for an upper-limb was assembled that costed only $25. Conclusions: In the near-future, commercially available 3D printers, may make developing one’s own prosthetics an easy to accomplish task within their home environment. In essence, this process would create a tighter coupling between how a product is conceived, developed, and manufactured, as well as alleviate costs. 
    more » « less
  2. Conventional bulky and rigid electronics prevents compliant interfacing with soft human skin for health monitoring and human-machine interaction, due to the incompatible mechanical characteristics. To overcome the limitations, soft skin-mountable electronics with superior mechanical softness, flexibility, and stretchability provides an effective platform for intimate interaction with humans. In addition, soft electronics offers comfortability when worn on the soft, curvilinear, and dynamic human skin. In this review, recent advances in soft electronics as health monitors and human-machine interfaces (HMIs) are briefly discussed. Strategies to achieve softness in soft electronics including structural designs, material innovations, and approaches to optimize the interface between human skin and soft electronics are briefly reviewed. Characteristics and performances of soft electronic devices for health monitoring, including temperature sensors, pressure sensors for pulse monitoring, pulse oximeters, electrophysiological sensors, and sweat sensors, exemplify their wide range of utility. Furthermore, we review the soft devices for prosthetic limb, household object, mobile machine, and virtual object control to highlight the current and potential implementations of soft electronics for a broad range of HMI applications. This review concludes with a discussion on the current limitations and future opportunities of soft skin-mountable electronics. 
    more » « less
  3. Abstract Structural variants (SVs)—including duplications, deletions, and inversions of DNA—can have significant genomic and functional impacts but are technically difficult to identify and assay compared with single‐nucleotide variants. With the aid of new genomic technologies, it has become clear that SVs account for significant differences across and within species. This phenomenon is particularly well‐documented for humans and other primates due to the wealth of sequence data available. In great apes, SVs affect a larger number of nucleotides than single‐nucleotide variants, with many identified SVs exhibiting population and species specificity. In this review, we highlight the importance of SVs in human evolution by (1) how they have shaped great ape genomes resulting in sensitized regions associated with traits and diseases, (2) their impact on gene functions and regulation, which subsequently has played a role in natural selection, and (3) the role of gene duplications in human brain evolution. We further discuss how to incorporate SVs in research, including the strengths and limitations of various genomic approaches. Finally, we propose future considerations in integrating existing data and biospecimens with the ever‐expanding SV compendium propelled by biotechnology advancements. 
    more » « less
  4. This article provides a comprehensive narrative review of physical task-based assessments used to evaluate the multi-grasp dexterity and functional impact of varying control systems in pediatric and adult upper-limb prostheses. Our search returned 1,442 research articles from online databases, of which 25 tests—selected for their scientific rigor, evaluation metrics, and psychometric properties—met our review criteria. We observed that despite significant advancements in the mechatronics of upper-limb prostheses, these 25 assessments are the only validated evaluation methods that have emerged since the first measure in 1948. This not only underscores the lack of a consistently updated, standardized assessment protocol for new innovations, but also reveals an unsettling trend: as technology outpaces standardized evaluation measures, developers will often support their novel devices through custom, study-specific tests. These boutique assessments can potentially introduce bias and jeopardize validity. Furthermore, our analysis revealed that current validated evaluation methods often overlook the influence of competing interests on test success. Clinical settings and research laboratories differ in their time constraints, access to specialized equipment, and testing objectives, all of which significantly influence assessment selection and consistent use. Therefore, we propose a dual testing approach to address the varied demands of these distinct environments. Additionally, we found that almost all existing task-based assessments lack an integrated mechanism for collecting patient feedback, which we assert is essential for a holistic evaluation of upper-limb prostheses. Our review underscores the pressing need for a standardized evaluation protocol capable of objectively assessing the rapidly advancing prosthetic technologies across all testing domains. 
    more » « less
  5. Although beginning to emerge, multiarticulate upper limb prostheses for children remain sparse despite the continued advancement of mechatronic technologies that have benefited adults with upper limb amputations. Upper limb prosthesis research is primarily focused on adults, even though rates of pediatric prosthetic abandonment far surpass those seen in adults. The implicit goal of a prosthesis is to provide effective functionality while promoting healthy social interaction. Yet most current pediatric devices offer a single degree of freedom open/close grasping function, a stark departure from the multiple grasp configurations provided in advanced adult devices. Although comparable child-sized devices are on the clinical horizon, understanding how to effectively translate these technologies to the pediatric population is vital. This includes exploring grasping movements that may provide the most functional benefits and techniques to control the newly available dexterity. Currently, no dexterous pediatric research platforms exist that offer open access to hardware and programming to facilitate the investigation and provision of multi-grasp function. Our objective was to deliver a child-sized multi-grasp prosthesis that may serve as a robust research platform. In anticipation of an open-source release, we performed a comprehensive set of benchtop and functional tests with common household objects to quantify the performance of our device. This work discusses and evaluates our pediatric-sized multiarticulate prosthetic hand that provides 6 degrees of actuation, weighs 177 g and was designed specifically for ease of implementation in a research or clinical-research setting. Through the benchtop and validated functional tests, the pediatric hand produced grasping forces ranging from 0.424–7.216 N and was found to be comparable to the functional capabilities of similar adult devices. As mechatronic technologies advance and multiarticulate prostheses continue to evolve, translating many of these emerging technologies may help provide children with more useful and functional prosthesis options. Effective translation will inevitably require a solid scientific foundation to inform how best to prescribe advanced prosthetic devices and control systems for children. This work begins addressing these current gaps by providing a much-needed research platform with supporting data to facilitate its use in laboratory and clinical research settings. 
    more » « less