Objective: The purpose of this paper is to briefly describe the initial stages of our efforts towards the development of easy to manufacture, low-cost, three-dimensional (3D) printed prosthetics. Specifically, here we describe the design of an upper-limb prosthetic for youths. When private insurance and public funding are insufficient, financial resources are limiting factors in obtaining quality prosthetics for the amputee. The need for cost-effective, economical solutions for prosthetics is particularly important for children in that they frequently outgrow them and costs are prohibitively expensive. Thus, 3D printed prosthetics may pose as a potential solution. In parallel to the above objective, additive manufacturing (or 3D printing) knowledge and training, within the rapidly growing field of Biomedical Engineering (or BME), is becoming increasingly important, in that it may provide solutions for numerous medically-related applications. As such, it is imperative that 3D printing exposure be incorporated, for research-based, as well as experiential project-based, contexts. Methods: Well-known mechanical design processes and quality function deployment were implemented here to design a prosthetic that could aid youths suffering from upper-limb loss. Computer-generated designs were used to in conjunction with a Cubify 3D printer to create the prosthetic hand components. Results: A simple, accessible, affordable design for an upper-limb was assembled that costed only $25. Conclusions: In the near-future, commercially available 3D printers, may make developing one’s own prosthetics an easy to accomplish task within their home environment. In essence, this process would create a tighter coupling between how a product is conceived, developed, and manufactured, as well as alleviate costs.
more »
« less
Integrating Upper-Limb Prostheses with the Human Body: Technology Advances, Readiness, and Roles in Human–Prosthesis Interaction
Significant advances in bionic prosthetics have occurred in the past two decades. The field's rapid expansion has yielded many exciting technologies that can enhance the physical, functional, and cognitive integration of a prosthetic limb with a human. We review advances in the engineering of prosthetic devices and their interfaces with the human nervous system, as well as various surgical techniques for altering human neuromusculoskeletal systems for seamless human–prosthesis integration. We discuss significant advancements in research and clinical translation, focusing on upper limbprosthetics since they heavily rely on user intent for daily operation, although many discussed technologies have been extended to lower limb prostheses as well. In addition, our review emphasizes the roles of advanced prosthetics technologies in complex interactions with humans and the technology readiness levels (TRLs) of individual research advances. Finally, we discuss current gaps and controversies in the field and point out future research directions, guided by TRLs.
more »
« less
- Award ID(s):
- 1954587
- PAR ID:
- 10635025
- Publisher / Repository:
- https://www.annualreviews.org/
- Date Published:
- Journal Name:
- Annual Review of Biomedical Engineering
- Volume:
- 26
- Issue:
- 1
- ISSN:
- 1523-9829
- Page Range / eLocation ID:
- 503 to 528
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Conventional bulky and rigid electronics prevents compliant interfacing with soft human skin for health monitoring and human-machine interaction, due to the incompatible mechanical characteristics. To overcome the limitations, soft skin-mountable electronics with superior mechanical softness, flexibility, and stretchability provides an effective platform for intimate interaction with humans. In addition, soft electronics offers comfortability when worn on the soft, curvilinear, and dynamic human skin. In this review, recent advances in soft electronics as health monitors and human-machine interfaces (HMIs) are briefly discussed. Strategies to achieve softness in soft electronics including structural designs, material innovations, and approaches to optimize the interface between human skin and soft electronics are briefly reviewed. Characteristics and performances of soft electronic devices for health monitoring, including temperature sensors, pressure sensors for pulse monitoring, pulse oximeters, electrophysiological sensors, and sweat sensors, exemplify their wide range of utility. Furthermore, we review the soft devices for prosthetic limb, household object, mobile machine, and virtual object control to highlight the current and potential implementations of soft electronics for a broad range of HMI applications. This review concludes with a discussion on the current limitations and future opportunities of soft skin-mountable electronics.more » « less
-
Medical robotics has revolutionized healthcare by enhancing precision, adaptability, and clinical outcomes. This field has further evolved with the advent of human–machine interfaces (HMIs), which facilitate seamless interactions between users and robotic systems. However, traditional HMIs rely on rigid sensing components and bulky wiring, causing mechanical mismatches that limit user comfort, accuracy, and wearability. Flexible sensors offer a transformative solution by enabling the integration of adaptable sensing technology into HMIs, enhancing overall system functionality. Further integrating artificial intelligence (AI) into these systems addresses key limitations of conventional HMI, including challenges in complex data interpretations and multimodal sensing integration. In this review, we systematically explore the convergence of flexible sensor‐based HMIs and AI for medical robotics. Specifically, we analyze core flexible sensing mechanisms, AI‐driven advancements in healthcare, and applications in prosthetics, exoskeletons, and surgical robotics. By bridging the gap between flexible sensing technologies and AI‐driven intelligence, this review presents a roadmap for developing next‐generation smart medical robotic systems, advancing personalized healthcare and adaptive human–robot interactions.more » « less
-
Abstract Structural variants (SVs)—including duplications, deletions, and inversions of DNA—can have significant genomic and functional impacts but are technically difficult to identify and assay compared with single‐nucleotide variants. With the aid of new genomic technologies, it has become clear that SVs account for significant differences across and within species. This phenomenon is particularly well‐documented for humans and other primates due to the wealth of sequence data available. In great apes, SVs affect a larger number of nucleotides than single‐nucleotide variants, with many identified SVs exhibiting population and species specificity. In this review, we highlight the importance of SVs in human evolution by (1) how they have shaped great ape genomes resulting in sensitized regions associated with traits and diseases, (2) their impact on gene functions and regulation, which subsequently has played a role in natural selection, and (3) the role of gene duplications in human brain evolution. We further discuss how to incorporate SVs in research, including the strengths and limitations of various genomic approaches. Finally, we propose future considerations in integrating existing data and biospecimens with the ever‐expanding SV compendium propelled by biotechnology advancements.more » « less
-
Abstract Wearable electronics revolutionize human–machine interfaces (HMIs) for robotic or prosthetic control. Yet, the challenge lies in eliminating conventional rigid and impermeable electronic components, such as batteries, while considering the comfort and usability of HMIs over prolonged periods. Herein, a self‐powered, flexible, and breathable HMI is developed based on piezoelectric sensors. This interface is designed to accurately monitor subtle changes in body and muscle movements, facilitating effective communication and control of robotic prosthetic hands for various applications. Utilizing engineered porous structures within the polymeric material, the piezoelectric sensor demonstrates a significantly enhanced sensitivity, flexibility, and permeability, highlighting its outstanding HMI applications. Furthermore, the developed control algorithm enables a single sensor to comprehensively control robotic hands. By successfully translating piezoelectric signals generated from bicep muscle movements into Morse Code, this HMI serves as an efficient communication device. Additionally, the process is demonstrated by illustrating the execution of the daily task of “drinking a cup of water” using the developed HMI to enable the control of a human‐interactive robotic prosthetic hand through the detection of bicep muscle movements. Such HMIs pave the way toward self‐powered and comfortable biomimetic systems, making a significant contribution to the future evolution of prosthetics.more » « less
An official website of the United States government

