skip to main content


Title: SECOND ORDER, LINEAR, AND UNCONDITIONALLY ENERGY STABLE SCHEMES FOR A HYDRODYNAMIC MODEL OF SMECTIC-A LIQUID CRYSTALS
In this paper, we consider the numerical approximations for a hydrodynamical model of smectic-A liquid crystals. The model, derived from the variational approach of the modified Oseen– Frank energy, is a highly nonlinear system that couples the incompressible Navier–Stokes equations and a constitutive equation for the layer variable. We develop two linear, second order time marching schemes based on the Invariant Energy Quadratization method for nonlinear terms in the constitutive equation, the projection method for the Navier–Stokes equations, and some subtle implicit-explicit treatments for the convective and stress terms. Moreover, we prove the well-posedness of the linear system and their unconditionally energy stabilities rigorously. Various numerical experiments are presented to demonstrate the stability and the accuracy of the numerical schemes in simulating the dynamics under shear flow and the magnetic field.  more » « less
Award ID(s):
1720212
NSF-PAR ID:
10063237
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
SIAM journal on scientific computing
Volume:
39
Issue:
6
ISSN:
1095-7197
Page Range / eLocation ID:
A2808–A2833
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we consider numerical approximations for a dendritic solidification phase field model with melt convection in the liquid phase, which is a highly nonlinear system that couples the anisotropic Allen-Cahn type equation, the heat equation, and the weighted Navier-Stokes equations together. We first reformulate the model into a form which is suitable for numerical approximations and establish the energy dissipative law. Then, we develop a linear, decoupled, and unconditionally energy stable numerical scheme by combining the modified projection scheme for the Navier-Stokes equations, the Invariant Energy Quadratization approach for the nonlinear anisotropic potential, and some subtle explicit-implicit treatments for nonlinear coupling terms. Stability analysis and various numerical simulations are presented. 
    more » « less
  2. The dynamics of incompressible fluid flows are governed by a non-normal linear dynamical system in feedback with a static energy-conserving nonlinearity. These dynamics can be altered using feedback control but verifying performance of a given control law can be challenging. The conventional approach is to perform a campaign of high-fidelity direct numerical simulations to assess performance over a wide range of parameters and disturbance scenarios. In this paper, we propose an alternative simulation-free approach for controller verification. The incompressible Navier-Stokes equations are modeled as a linear system in feedback with a static and quadratic nonlinearity. The energy conserving property of this nonlinearity can be expressed as a set of quadratic constraints on the system, which allows us to perform a nonlinear stability analysis of the fluid dynamics with minimal complexity. In addition, the Reynolds number variations only influence the linear dynamics in the Navier-Stokes equations. Therefore, the fluid flow can be modeled as a parameter-varying linear system (with Reynolds number as the parameter) in feedback with a quadratic nonlinearity. The quadratic constraint framework is used to determine the range of Reynolds numbers over which a given flow will be stable, without resorting to numerical simulations. We demonstrate the framework on a reduced-order model of plane Couette flow. We show that our proposed method allows us to determine the critical Reynolds number, largest initial disturbance, and a range of parameter variations over which a given controller will stabilize the nonlinear dynamics. 
    more » « less
  3. Droplet formation happens in finite time due to the surface tension force. The linear stability analysis is useful to estimate the size of a droplet but fails to approximate the shape of the droplet. This is due to a highly nonlinear flow description near the point where the first pinch-off happens. A one-dimensional axisymmetric mathematical model was first developed by Eggers and Dupont [“Drop formation in a one-dimensional approximation of the Navier–Stokes equation,” J. Fluid Mech. 262, 205–221 (1994)] using asymptotic analysis. This asymptotic approach to the Navier–Stokes equations leads to a universal scaling explaining the self-similar nature of the solution. Numerical models for the one-dimensional model were developed using the finite difference [Eggers and Dupont, “Drop formation in a one-dimensional approximation of the Navier–Stokes equation,” J. Fluid Mech. 262, 205–221 (1994)] and finite element method [Ambravaneswaran et al., “Drop formation from a capillary tube: Comparison of one-dimensional and two-dimensional analyses and occurrence of satellite drops,” Phys. Fluids 14, 2606–2621 (2002)]. The focus of this study is to provide a robust computational model for one-dimensional axisymmetric droplet formation using the Portable, Extensible Toolkit for Scientific Computation. The code is verified using the Method of Manufactured Solutions and validated using previous experimental studies done by Zhang and Basaran [“An experimental study of dynamics of drop formation,” Phys. Fluids 7, 1184–1203 (1995)]. The present model is used for simulating pendant drops of water, glycerol, and paraffin wax, with an aspiration of extending the application to simulate more complex pinch-off phenomena. 
    more » « less
  4. In this paper, we consider the numerical approximation for a phase field model of the coupled two-phase free flow and two-phase porous media flow. This model consists of Cahn– Hilliard–Navier–Stokes equations in the free flow region and Cahn–Hilliard–Darcy equations in the porous media region that are coupled by seven interface conditions. The coupled system is decoupled based on the interface conditions and the solution values on the interface from the previous time step. A fully discretized scheme with finite elements for the spatial discretization is developed to solve the decoupled system. In order to deal with the difficulties arising from the interface conditions, the decoupled scheme needs to be constructed appropriately for the interface terms, and a modified discrete energy is introduced with an interface component. Furthermore, the scheme is linearized and energy stable. Hence, at each time step one need only solve a linear elliptic system for each of the two decoupled equations. Stability of the model and the proposed method is rigorously proved. Numerical experiments are presented to illustrate the features of the proposed numerical method and verify the theoretical conclusions. 
    more » « less
  5. Abstract

    We propose two mass and heat energy conservative, unconditionally stable, decoupled numerical algorithms for solving the Cahn–Hilliard–Navier–Stokes–Darcy–Boussinesq system that models thermal convection of two‐phase flows in superposed free flow and porous media. The schemes totally decouple the computation of the Cahn–Hilliard equation, the Darcy equations, the heat equation, the Navier–Stokes equations at each time step, and thus significantly reducing the computational cost. We rigorously show that the schemes are conservative and energy‐law preserving. Numerical results are presented to demonstrate the accuracy and stability of the algorithms.

     
    more » « less