skip to main content


Title: RAPID INTENSE PULSE LIGHT SINTERING OF COPPER SULPHIDE NANOPARTICLE FILMS
Copper sulphide (CuxS, x=1 to 2) is a metal chalcogenide semiconductor that exhibits useful optical and electrical properties due to the presence of copper vacancies. This makes CuxS thin films useful for a number of applications including infrared absorbing coatings, solar cells, thin-film electronics, and as a precursor for CZTS (Copper Zinc Tin Sulphide) thin films. Post-deposition sintering of CuxS nanoparticle films is a key process that affects the film properties and hence determines its operational characteristics in the above applications. Intense pulse light (IPL) sintering uses visible broad-spectrum xenon light to rapidly sinter nanoparticle films over large-areas, and is compatible with methods such as roll-to-roll deposition for large-area deposition of colloidal nanoparticle films and patterns. This paper experimentally examines the effect of IPL parameters on sintering of CuxS thin films. As-deposited and sintered films are compared in terms of their crystal structure, as well as optical and electrical properties, as a function of the IPL parameters.  more » « less
Award ID(s):
1809289
NSF-PAR ID:
10063293
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2017 12th International Manufacturing Science and Engineering Conference MSEC2017
Page Range / eLocation ID:
9
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Intense Pulsed Light Sintering (IPL) uses pulsed, large-area, broad-spectrum visible light from a xenon lamp for rapid fusion of nanomaterials into films or patterns used in flexible sensors, solar cells, displays and other applications. Past work on the IPL of silver nanoparticles has shown that a self-damping coupling between densification and optical absorption governs the evolution of the deposited nanomaterial temperature during IPL. This work examines the influence of the nanomaterial shape distribution on this coupling and on the temperature evolution in IPL of silver nanowire–nanoparticle composite films. The film thickness, resistivity, micromorphology, crystallinity and optical properties are compared for varying ratios of nanowire to nanoparticle content in the film. It is shown for the first time, that increasing the nanowire content reduces the maximum film temperature during IPL from 240 °C to 150 °C and substantially alters the temperature evolution trends over consecutive pulses, while enabling film resistivity within 4–5 times that of bulk silver in 2.5 seconds of processing time. Nanoscale electromagnetic models are used to understand optical absorption as a function of changing ratio of nanowires to nanoparticles in a model assembly that emulates the IPL experiments performed here. The coupling between densification and optical absorption is found to inherently depend on the nanomaterial shape distribution and the ability of this phenomenon to explain the experimental temperature evolution trends is discussed. The implications of these observations for controlling self-damping coupling in IPL and the optimum nanoparticle to nanowire ratios for concurrently achieving high throughput, low processing temperatures, low material costs and low resistivity in IPL of conductive metallic nanomaterials are also described. 
    more » « less
  2. Microscale continuous thin films or patterned conductive structures find applications in thin film electronics, energy generation and functional sensor systems. An emerging alternative to conventional vacuum based deposition of such structures is the additive deposition and sintering of conductive nanoparticles, to enable low temperature, low-cost and low energy fabrication. While significant work has gone into additive deposition of nanoparticles the realization of the above potential needs nanoparticle sintering methods that are equally low-cost, in-situ, ambient condition and desktop-sized in nature. This work demonstrates the integration of non-laser based, low-cost and small footprint optical energy sources for ambient condition sintering of conductive nanoparticles, with wide-area aerosol jet based additive printing of nanoparticle inks. The nanoparticle sintering is characterized by quantifying the sintering temperatures, sintered material conductivity, crystallinity, optical properties, thickness and microscale morphology in terms of the sintering parameters. It is shown that such optical sintering sources can be further integrated with inkjet printing as well, and the implications on new paradigms for hybrid additive- 
    more » « less
  3. Sintering of nanoparticles deposited onto rigid or flexible substrate is required for many devices that use continuous and patterned thin films. An emerging need in this area is to perform nanoparticle sintering under ambient conditions, at high speeds, and with throughput that is compatible with high speed nanoparticle deposition techniques. Intense Pulsed Light sintering (IPL) uses a high energy, broad area and broad spectrum beam of xenon lamp light to sinter metallic and non-metallic nanoparticles. The capability of IPL to meet the above needs has been demonstrated. This paper experimentally examines temperature evolution and densification during IPL. It is shown, for the first time, that temperature rise and densification in IPL are related to each other. A coupled optical-thermal-sintering model on the nanoscale is developed, to understand this phenomenon. This model is used to show that the change in nanoscale shape of the nanoparticle ensemble due to sintering, reduces the optically induced heating as the densification proceeds, which provides a better explanation of experimental observations as compared to current models of IPL. The implications of this new understanding on the performance of IPL are also discussed. 
    more » « less
  4. The organic metal halide perovskite material is capable of high throughput manufacturing via traditional deposition processes used in roll-to-roll, yet thermal annealing post deposition may require long ovens. We report rapid annealed perovskite thin films using intense pulsed light (IPL) to initiate a radiative thermal response that is enabled by an alkyl halide additive that collectively improves the performance of a device processed in an ambient environment from a baseline of 10 to 16.5% efficiency. Previous reports on CH 3 NH 3 PbI 3 perovskite films using IPL processing achieved functional devices in milli-second time scales and are promising for high throughput manufacturing processes under ambient conditions. In this study, we found that the addition of diiodomethane (CH 2 I 2 ) as an additive to the methylammonium iodide (MAI)/lead iodide (PbI 2 ) precursor ink chemistry and subsequent IPL thermal annealing are inter-dependent. The concentration of CH 2 I 2 and IPL processing parameters have a direct effect on the surface morphology of the films and performance within a perovskite solar cell (PSC). The CH 2 I 2 dissociates under exposure to ultraviolet (UV) radiation from the IPL source liberating iodine ions in the film, influencing the perovskite formation and reducing the defect states. We anticipate that these results can be utilized to further develop different ink formulations using alkyl halides for the IPL technique to improve the performance of perovskite solar cells processed in ambient conditions. 
    more » « less
  5.  
    more » « less