skip to main content


Title: Operational and Strategic Decisions in Engineering Design Games
Engineering design games model decision-making activities by incorporating human participants in an entertaining platform. This article distinguishes between design decisions at operational and strategic timescales as important features of engineering design games. Operational decisions consider static and short-term dynamic decisions to establish a player’s situation awareness and initial entertainment. Strategic decisions consider longer-term dynamic decisions subject to large uncertainties to retain player engagement. However, constraints on cognitive load limit the ability to simultaneously address both lower-level operational design decisions and higher-level strategic decisions such as collaboration or sustainability. Partial automation can be introduced to reduce cognitive load for operational decisions and focus additional effort on strategic decisions. To illustrate tradeoffs between operational and strategic decisions, this paper discusses example cases for two existing games: Orbital Federates and EcoRacer. Discussion highlights the role of automation and entertainment in engaging human participants in engineering design games and makes recommendations for design of future engineering design games.  more » « less
Award ID(s):
1742971
NSF-PAR ID:
10063344
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In the realm of robotics and automation, robot teleoperation, which facilitates human–machine interaction in distant or hazardous settings, has surged in significance. A persistent issue in this domain is the delays between command issuance and action execution, causing negative repercussions on operator situational awareness, performance, and cognitive load. These delays, particularly in long-distance operations, are difficult to mitigate even with the most advanced computing advancements. Current solutions mainly revolve around machine-based adjustments to combat these delays. However, a notable lacuna remains in harnessing human perceptions for an enhanced subjective teleoperation experience. This paper introduces a novel approach of sensory manipulation for induced human adaptation in delayed teleoperation. Drawing from motor learning and rehabilitation principles, it is posited that strategic sensory manipulation, via altered sensory stimuli, can mitigate the subjective feeling of these delays. The focus is not on introducing new skills or adapting to novel conditions; rather, it leverages prior motor coordination experience in the context of delays. The objective is to reduce the need for extensive training or sophisticated automation designs. A human-centered experiment involving 41 participants was conducted to examine the effects of modified haptic cues in teleoperations with delays. These cues were generated from high-fidelity physics engines using parameters from robot-end sensors or physics engine simulations. The results underscored several benefits, notably the considerable reduction in task time and enhanced user perceptions about visual delays. Real-time haptic feedback, or the anchoring method, emerged as a significant contributor to these benefits, showcasing reduced cognitive load, bolstered self-confidence, and minimized frustration. Beyond the prevalent methods of automation design and training, this research underscores induced human adaptation as a pivotal avenue in robot teleoperation. It seeks to enhance teleoperation efficacy through rapid human adaptation, offering insights beyond just optimizing robotic systems for delay compensations.

     
    more » « less
  2. Owing to the increasing dynamics and complexity of construction tasks, workers often need to memorize a big amount of engineering information prior to the operations, such as spatial orientations and operational procedures. The working memory development, as a result, is critical to the performance and safety of many construction tasks. This study investigates how the format of engineering information affects human working memory based on a human-subject Virtual Reality (VR) experiment (n=90). A VR model was created to simulate a pipe maintenance task. First, participants were asked to review the task procedures in one of the following formats, including 2D isometric drawings, 3D model, and VR model. After the review session, participants were asked to perform the pipe maintenance task in the virtual environment based on their working memory. The operation accuracy and time were used as the key performance indicators of the working memory development. The experiment results indicate that the 3D and VR groups outperformed the 2D group in both operation accuracy and time, suggesting that a more immersive instruction leads to a better working memory. A further examination finds that the 2D group presented a significantly higher level of intrinsic cognitive load and extraneous cognitive load in the working memory development compared to the 3D and VR groups, indicating that different engineering information formats can cause different levels of cognitive load in working memory development, and ultimately affect the final performance. The findings are expected to inspire the design of intelligent information systems that adapt to the cognitive load of construction workers for improved working memory development. 
    more » « less
  3. The digital divide limits the flow of potential students through the science, technology, engineering, and mathematics (STEM) pipeline and into STEM careers. The digital divide is a dynamic and constantly evolving concept of digital exclusion that encompasses numerous dimensions and levels. The “usage access gap” and the “second-level divide” both account for differences in how digitally divided people actually use technology. In this study, we employ social cognitive theory as a framework to explore the impact of various kinds of technology usage on predominately minority students’ technology and application self-efficacy. Data were gathered over the course of a large-scale computing intervention that took place in an elementary school district in the southeastern United States. Results indicate that usage access gap activities and second-level divide activities, such as playing games or talking to friends online, may actually help increase students’ technology self-efficacy and computer application self-efficacy. Entertainment and social networking activities provide students with positive direct experiences with technology, which may help close this dimension/level of the digital divide over time. Future computing interventions should consider establishing dedicated “computer recess” time to help digitally divided students increase their technology self-efficacy.

     
    more » « less
  4. Robot design is a complex cognitive activity that requires the designer to iteratively navigate multiple engineering disciplines and the relations between them. In this paper, we explore how people approach robot design and how trends in design strategy vary with the level of expertise of the designer. Using our interactive Build-a-Bot software tool, we recruited 39 participants from the 2022 IEEE International Conference on Robotics and Automation. These participants varied in age from 19 to 56 years, and had between 0 and 17 years of robotics experience. We tracked the participants’ design decisions over the course of a 15 min. task of designing a ground robot to cross an uneven environment. Our results showed that participants engaged in iterative testing and modification of their designs, but unlike previous studies, there was no statistically significant effect of participant’s expertise on the frequency of iterations. We additionally found that, across levels of expertise, participants were vulnerable to design fixation, in which they latched onto an initial design concept and insufficiently adjusted the design, even when confronted with difficulties developing the concept into a satisfactory solution. The results raise interesting questions for how future engineers can avoid fixation and how design tools can assist in both efficient assessment and optimization of design workflow for complex design tasks. 
    more » « less
  5. This Research Full paper focuses on perceptions and experiences of freshman and sophomore engineering students when playing an online serious engineering game that was designed to improve engineering intuition and knowledge of statics. Use of serious educational engineering games has increased in engineering education to help students increase technical competencies in engineering disciplines. However, few have investigated how these engineering games are experienced by the students; how games influence students' perceptions of learning, or how these factors may lead to inequitable perspectives among diverse populations of students. Purpose/Hypothesis: The purpose of this study was to explore the perceptions, appeal, and opinions about the efficacy of educational online games among a diverse population of students in an engineering mechanics statics course. It was hypothesized that compared to majority groups (e.g., men, White), women of color who are engineering students would experience less connections to the online educational game in terms of ease of use and level of frustration while playing. It is believed that these discordant views may negatively influence the game's appeal and efficacy towards learning engineering in this population of students. Design/Method: The Technology Acceptance Model (TAM) is expanded in this study, where the perspectives of women of colour (Latinx, Asian and African American) engineering students are explored. The research approach employed in this study is a mixed-method sequential exploratory design, where students first played the online engineering educational game, then completed a questionnaire, followed by participation in a focus group. Responses were initially analyzed through open and magnitude coding approaches to understand whether students thought these educational games reflected their personal culture. Results: Preliminary results indicate that though the majority of the students were receptive to using the online engineering software for their engineering education, merely a few intimated that they would use this software for engineering exam or technical job interview preparation. A level-one categorical analysis identified a few themes that comprised unintended preservation of inequality in favor of students who enjoyed contest-based education and game technology. Competition-based valuation of presumed mastery of course content fostered anxiety and intimidation among students, which caused some to "game the game" instead of studying the material, to meet grade goals. Some students indicated that they spent more time (than necessary) to learn the goals of the game than engineering content itself, suggesting a need to better integrate course material while minimizing cognitive effort in learning to navigate the game. Conclusions: Preliminary results indicate that engineering software's design and the way is coupled with course grading and assessment of learning outcomes, affect student perceptions of the technology's acceptance, usefulness, and ease of use as a "learning tool." Students were found to have different expectations of serious games juxtaposed software/apps designed for entertainment. Conclusions also indicate that acceptance of inquiry-based educational games in a classroom among diverse populations of students should clearly articulate and connect the game goals/objectives with class curriculum content. Findings also indicate that a multifaceted schema of tools, such as feedback on game challenges, and explanations for predictions of the game should be included in game/app designs. 
    more » « less