skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Operational and Strategic Decisions in Engineering Design Games
Engineering design games model decision-making activities by incorporating human participants in an entertaining platform. This article distinguishes between design decisions at operational and strategic timescales as important features of engineering design games. Operational decisions consider static and short-term dynamic decisions to establish a player’s situation awareness and initial entertainment. Strategic decisions consider longer-term dynamic decisions subject to large uncertainties to retain player engagement. However, constraints on cognitive load limit the ability to simultaneously address both lower-level operational design decisions and higher-level strategic decisions such as collaboration or sustainability. Partial automation can be introduced to reduce cognitive load for operational decisions and focus additional effort on strategic decisions. To illustrate tradeoffs between operational and strategic decisions, this paper discusses example cases for two existing games: Orbital Federates and EcoRacer. Discussion highlights the role of automation and entertainment in engaging human participants in engineering design games and makes recommendations for design of future engineering design games.  more » « less
Award ID(s):
1742971
NSF-PAR ID:
10063344
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper evaluates a questionnaire-based risk attitude assessment method to quantify individual risk attitudes for strategic, multi-actor design decisions. A lottery-equivalence questionnaire elicits a utility curve for risky payoffs which is fit to a Constant Absolute Risk Aversion (CARA) model. Secondary data from a multi-actor design experiment provides observations of strategic decisions in two-actor design games for validation. 124 participants complete the risk attitude questionnaire and a series of 29 experimental tasks. Assuming participants follow the risk dominance equilibrium selection criterion, a risk-neutral utility function accurately predicts 62.2% of decisions. Incorporating risk attitudes elicited from the questionnaire only increases the accuracy to 63.3% while incorporating risk attitudes inferred from observations increases the accuracy to 77.5%. While participants exhibit differential risk attitudes in design tasks, results show the lottery-equivalent questionnaire does not provide risk attitudes consistent with strategic design decisions. Results support findings that risk in the engineering domain is contextual. This paper concludes that risk attitude is an important factor in understanding strategic decisions in interactive engineering design settings and understanding risk attitudes can help create more efficient design processes. 
    more » « less
  2. Owing to the increasing dynamics and complexity of construction tasks, workers often need to memorize a big amount of engineering information prior to the operations, such as spatial orientations and operational procedures. The working memory development, as a result, is critical to the performance and safety of many construction tasks. This study investigates how the format of engineering information affects human working memory based on a human-subject Virtual Reality (VR) experiment (n=90). A VR model was created to simulate a pipe maintenance task. First, participants were asked to review the task procedures in one of the following formats, including 2D isometric drawings, 3D model, and VR model. After the review session, participants were asked to perform the pipe maintenance task in the virtual environment based on their working memory. The operation accuracy and time were used as the key performance indicators of the working memory development. The experiment results indicate that the 3D and VR groups outperformed the 2D group in both operation accuracy and time, suggesting that a more immersive instruction leads to a better working memory. A further examination finds that the 2D group presented a significantly higher level of intrinsic cognitive load and extraneous cognitive load in the working memory development compared to the 3D and VR groups, indicating that different engineering information formats can cause different levels of cognitive load in working memory development, and ultimately affect the final performance. The findings are expected to inspire the design of intelligent information systems that adapt to the cognitive load of construction workers for improved working memory development. 
    more » « less
  3. Abstract

    In the realm of robotics and automation, robot teleoperation, which facilitates human–machine interaction in distant or hazardous settings, has surged in significance. A persistent issue in this domain is the delays between command issuance and action execution, causing negative repercussions on operator situational awareness, performance, and cognitive load. These delays, particularly in long-distance operations, are difficult to mitigate even with the most advanced computing advancements. Current solutions mainly revolve around machine-based adjustments to combat these delays. However, a notable lacuna remains in harnessing human perceptions for an enhanced subjective teleoperation experience. This paper introduces a novel approach of sensory manipulation for induced human adaptation in delayed teleoperation. Drawing from motor learning and rehabilitation principles, it is posited that strategic sensory manipulation, via altered sensory stimuli, can mitigate the subjective feeling of these delays. The focus is not on introducing new skills or adapting to novel conditions; rather, it leverages prior motor coordination experience in the context of delays. The objective is to reduce the need for extensive training or sophisticated automation designs. A human-centered experiment involving 41 participants was conducted to examine the effects of modified haptic cues in teleoperations with delays. These cues were generated from high-fidelity physics engines using parameters from robot-end sensors or physics engine simulations. The results underscored several benefits, notably the considerable reduction in task time and enhanced user perceptions about visual delays. Real-time haptic feedback, or the anchoring method, emerged as a significant contributor to these benefits, showcasing reduced cognitive load, bolstered self-confidence, and minimized frustration. Beyond the prevalent methods of automation design and training, this research underscores induced human adaptation as a pivotal avenue in robot teleoperation. It seeks to enhance teleoperation efficacy through rapid human adaptation, offering insights beyond just optimizing robotic systems for delay compensations.

     
    more » « less
  4. Feng, Minyu (Ed.)
    Engineering systems, characterized by their high technical complexity and societal intricacies, require a strategic design approach to navigate multifaceted challenges. Understanding the circumstances that affect strategic action in these systems is crucial for managing complex real-world challenges. These challenges go beyond localized coordination issues and encompass intricate dynamics, requiring a deep understanding of the underlying structures impacting strategic behaviors, the interactions between subsystems, and the conflicting needs and expectations of diverse actors. Traditional optimization and game-theoretic approaches to guide individual and collective decisions need adaptation to capture the complexities of these design ecosystems, particularly in the face of increasing numbers of decision-makers and various interconnections between them. This paper presents a framework for studying strategic decision-making processes in collective systems. It tackles the combinatorial complexity and interdependencies inherent in large-scale systems by representing strategic decision-making processes as binary normal-form games, then dissects and reinterprets them in terms of multiple compact games characterized by two real-numbered structural factors and classifies them across four strategy dynamical domains associated with different stability conditions. We provide a mathematical characterization and visual representation of emergent strategy dynamics in games with three or more actors intended to facilitate its implementation by researchers and practitioners and elicit new perspectives on design and management for optimizing systems-of-systems performance. We conclude this paper with a discussion of the opportunities and challenges of adopting this framework within and beyond the context of engineering systems. 
    more » « less
  5. The digital divide limits the flow of potential students through the science, technology, engineering, and mathematics (STEM) pipeline and into STEM careers. The digital divide is a dynamic and constantly evolving concept of digital exclusion that encompasses numerous dimensions and levels. The “usage access gap” and the “second-level divide” both account for differences in how digitally divided people actually use technology. In this study, we employ social cognitive theory as a framework to explore the impact of various kinds of technology usage on predominately minority students’ technology and application self-efficacy. Data were gathered over the course of a large-scale computing intervention that took place in an elementary school district in the southeastern United States. Results indicate that usage access gap activities and second-level divide activities, such as playing games or talking to friends online, may actually help increase students’ technology self-efficacy and computer application self-efficacy. Entertainment and social networking activities provide students with positive direct experiences with technology, which may help close this dimension/level of the digital divide over time. Future computing interventions should consider establishing dedicated “computer recess” time to help digitally divided students increase their technology self-efficacy.

     
    more » « less