skip to main content

Title: Peeking Behind the Curtains of Serverless Platforms
Serverless computing is an emerging paradigm in which an application's resource provisioning and scaling are managed by third-party services. Examples include AWS Lambda, Azure Functions, and Google Cloud Functions. Behind these services' easy-to-use APIs are opaque, complex infrastructure and management ecosystems. Taking on the viewpoint of a serverless customer, we conduct the largest measurement study to date, launching more than 50,000 function instances across these three services, in order to characterize their architectures, performance, and resource management efficiency. We explain how the platforms isolate the functions of different accounts, using either virtual machines or containers, which has important security implications. We characterize performance in terms of scalability, coldstart latency, and resource efficiency, with highlights including that AWS Lambda adopts a bin-packing-like strategy to maximize VM memory utilization, that severe contention between functions can arise in AWS and Azure, and that Google had bugs that allow customers to use resources for free.
; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Annual Technical Conference
Page Range or eLocation-ID:
133 - 146
Sponsoring Org:
National Science Foundation
More Like this
  1. Serverless computing is a new cloud programming and deployment paradigm that is receiving wide-spread uptake. Serverless offerings such as Amazon Web Services (AWS) Lambda, Google Functions, and Azure Functions automatically execute simple functions uploaded by developers, in response to cloud-based event triggers. The serverless abstraction greatly simplifies integration of concurrency and parallelism into cloud applications, and enables deployment of scalable distributed systems and services at very low cost. Although a significant first step, the serverless abstraction requires tools that software engineers can use to reason about, debug, and optimize their increasingly complex, asynchronous applications. Toward this end, we investigate the design and implementation of GammaRay, a cloud service that extracts causal dependencies across functions and through cloud services, without programmer intervention. We implement GammaRay for AWS Lambda and evaluate the overheads that it introduces for serverless micro-benchmarks and applications written in Python.
  2. With serverless computing, providers deploy application code and manage resource allocation dynamically, eliminating infrastructure management from application development. Serverless providers have a variety of virtualization platforms to choose from for isolating functions, ranging from native Linux processes to Linux containers to lightweight isolation platforms, such as Google gVisor and AWS Firecracker. These platforms form a spectrum as they move functionality out of the host kernel and into an isolated guest environment. For example, gVisor handles many system calls in a user-mode Sentry process while Firecracker runs a full guest operating system in each microVM. A common theme across these platforms are the twin goals of strong isolation and high performance. In this paper, we perform a comparative study of Linux containers (LXC), gVisor secure containers, and Firecracker microVMs to understand how they use Linux kernel services differently: how much does their use of host kernel functionality vary? We also evaluate the performance costs of the designs with a series of microbenchmarks targeting different kernel subsystems. Our results show that despite moving much functionality out of the kernel, both Firecracker and gVisor execute substantially more kernel code than native Linux. gVisor and Linux containers execute substantially the same code, although withmore »different frequency.« less
  3. Developers are always on the lookout for simple solutions to manage their applications on cloud platforms. Major cloud providers have already been offering automatic elasticity management solutions (e.g., AWS Lambda, Azure durable function) to users. However, many cloud applications are stateful --- while executing, functions need to share their state with others. Providing elasticity for such stateful functions is much more challenging, as a deployment/elasticity decision for a stateful entity can strongly affect others in ways which are hard to predict without any application knowledge. Existing solutions either only support stateless applications (e.g., AWS Lambda) or only provide limited elasticity management (e.g., Azure durable function) to stateful applications. PLASMA (Programmable Elasticity for Stateful Cloud Computing Applications) is a programming framework for elastic stateful cloud applications. It includes (1) an elasticity programming language as a second "level" of programming (complementing the main application programming language) for describing elasticity behavior, and (2) a novel semantics-aware elasticity management runtime that tracks program execution and acts upon application features as suggested by elasticity behavior. We have implemented 10+ applications with PLASMA. Extensive evaluation on Amazon AWS shows that PLASMA significantly improves their efficiency, e.g., achieving same performance as a vanilla setup with 25% fewermore »resources, or improving performance by 40% compared to the default setup.« less
  4. The salient pay-per-use nature of serverless computing has driven its continuous penetration as an alternative computing paradigm for various workloads. Yet, challenges arise and remain open when shifting machine learning workloads to the serverless environment. Specifically, the restriction on the deployment size over serverless platforms combining with the complexity of neural network models makes it difficult to deploy large models in a single serverless function. In this paper, we aim to fully exploit the advantages of the serverless computing paradigm for machine learning workloads targeting at mitigating management and overall cost while meeting the response-time Service Level Objective (SLO). We design and implement AMPS-Inf, an autonomous framework customized for model inferencing in serverless computing. Driven by the cost-efficiency and timely-response, our proposed AMPS-Inf automatically generates the optimal execution and resource provisioning plans for inference workloads. The core of AMPS-Inf relies on the formulation and solution of a Mixed-Integer Quadratic Programming problem for model partitioning and resource provisioning with the objective of minimizing cost without violating response time SLO. We deploy AMPS-Inf on the AWS Lambda platform, evaluate with the state-of-the-art pre-trained models in Keras including ResNet50, Inception-V3 and Xception, and compare with Amazon SageMaker and three baselines. Experimental results demonstratemore »that AMPSInf achieves up to 98% cost saving without degrading response time performance.« less
  5. Serverless computing has become increasingly popular for cloud applications, due to its compelling properties of high-level abstractions, lightweight runtime, high elasticity and pay-per-use billing. In this revolutionary computing paradigm shift, challenges arise when adapting data analytics applications to the serverless environment, due to the lack of support for efficient state sharing, which attract ever-growing research attention. In this paper, we aim to exploit the advantages of task level orchestration and fine-grained resource provisioning for data analytics on serverless platforms, with the hope of fulfilling the promise of serverless deployment to the maximum extent. To this end, we present ACTS, an autonomous cost-efficient task orchestration framework for serverless analytics. ACTS judiciously schedules and coordinates function tasks to mitigate cold-start latency and state sharing overhead. In addition, ACTS explores the optimization space of fine-grained workload distribution and function resource configuration for cost efficiency. We have deployed and implemented ACTS on AWS Lambda, evaluated with various data analytics workloads. Results from extensive experiments demonstrate that ACTS achieves up to 98% monetary cost reduction while maintaining superior job completion time performance, in comparison with the state-of-the-art baselines.