skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 29 until 11:59 PM ET on Saturday, September 30 due to maintenance. We apologize for the inconvenience.

Title: Tracking Causal Order in AWS Lambda Applications
Serverless computing is a new cloud programming and deployment paradigm that is receiving wide-spread uptake. Serverless offerings such as Amazon Web Services (AWS) Lambda, Google Functions, and Azure Functions automatically execute simple functions uploaded by developers, in response to cloud-based event triggers. The serverless abstraction greatly simplifies integration of concurrency and parallelism into cloud applications, and enables deployment of scalable distributed systems and services at very low cost. Although a significant first step, the serverless abstraction requires tools that software engineers can use to reason about, debug, and optimize their increasingly complex, asynchronous applications. Toward this end, we investigate the design and implementation of GammaRay, a cloud service that extracts causal dependencies across functions and through cloud services, without programmer intervention. We implement GammaRay for AWS Lambda and evaluate the overheads that it introduces for serverless micro-benchmarks and applications written in Python.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
IEEE International Conference on Cloud Engineering (IC2E)
Page Range / eLocation ID:
50 to 60
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Serverless computing is an emerging paradigm in which an application's resource provisioning and scaling are managed by third-party services. Examples include AWS Lambda, Azure Functions, and Google Cloud Functions. Behind these services' easy-to-use APIs are opaque, complex infrastructure and management ecosystems. Taking on the viewpoint of a serverless customer, we conduct the largest measurement study to date, launching more than 50,000 function instances across these three services, in order to characterize their architectures, performance, and resource management efficiency. We explain how the platforms isolate the functions of different accounts, using either virtual machines or containers, which has important security implications. We characterize performance in terms of scalability, coldstart latency, and resource efficiency, with highlights including that AWS Lambda adopts a bin-packing-like strategy to maximize VM memory utilization, that severe contention between functions can arise in AWS and Azure, and that Google had bugs that allow customers to use resources for free. 
    more » « less
  2. Serverless computing has become increasingly popular for cloud applications, due to its compelling properties of high-level abstractions, lightweight runtime, high elasticity and pay-per-use billing. In this revolutionary computing paradigm shift, challenges arise when adapting data analytics applications to the serverless environment, due to the lack of support for efficient state sharing, which attract ever-growing research attention. In this paper, we aim to exploit the advantages of task level orchestration and fine-grained resource provisioning for data analytics on serverless platforms, with the hope of fulfilling the promise of serverless deployment to the maximum extent. To this end, we present ACTS, an autonomous cost-efficient task orchestration framework for serverless analytics. ACTS judiciously schedules and coordinates function tasks to mitigate cold-start latency and state sharing overhead. In addition, ACTS explores the optimization space of fine-grained workload distribution and function resource configuration for cost efficiency. We have deployed and implemented ACTS on AWS Lambda, evaluated with various data analytics workloads. Results from extensive experiments demonstrate that ACTS achieves up to 98% monetary cost reduction while maintaining superior job completion time performance, in comparison with the state-of-the-art baselines. 
    more » « less
  3. Developers are always on the lookout for simple solutions to manage their applications on cloud platforms. Major cloud providers have already been offering automatic elasticity management solutions (e.g., AWS Lambda, Azure durable function) to users. However, many cloud applications are stateful --- while executing, functions need to share their state with others. Providing elasticity for such stateful functions is much more challenging, as a deployment/elasticity decision for a stateful entity can strongly affect others in ways which are hard to predict without any application knowledge. Existing solutions either only support stateless applications (e.g., AWS Lambda) or only provide limited elasticity management (e.g., Azure durable function) to stateful applications. PLASMA (Programmable Elasticity for Stateful Cloud Computing Applications) is a programming framework for elastic stateful cloud applications. It includes (1) an elasticity programming language as a second "level" of programming (complementing the main application programming language) for describing elasticity behavior, and (2) a novel semantics-aware elasticity management runtime that tracks program execution and acts upon application features as suggested by elasticity behavior. We have implemented 10+ applications with PLASMA. Extensive evaluation on Amazon AWS shows that PLASMA significantly improves their efficiency, e.g., achieving same performance as a vanilla setup with 25% fewer resources, or improving performance by 40% compared to the default setup. 
    more » « less
  4. Serverless computing is a rapidly growing cloud application model, popularized by Amazon's Lambda platform. Serverless cloud services provide fine-grained provisioning of resources, which scale automatically with user demand. Function-as-a-Service (FaaS) applications follow this serverless model, with the developer providing their application as a set of functions which are executed in response to a user- or system-generated event. Functions are designed to be short-lived and execute inside containers or virtual machines, introducing a range of system-level overheads. This paper studies the architectural implications of this emerging paradigm. Using the commercial-grade Apache OpenWhisk FaaS platform on real servers, this work investigates and identifies the architectural implications of FaaS serverless computing. The workloads, along with the way that FaaS inherently interleaves short functions from many tenants frustrates many of the locality-preserving architectural structures common in modern processors. In particular, we find that: FaaS containerization brings up to 20x slowdown compared to native execution, cold-start can be over 10x a short function's execution time, branch mispredictions per kilo-instruction are 20x higher for short functions, memory bandwidth increases by 6x due to the invocation pattern, and IPC decreases by as much as 35% due to inter-function interference. We open-source FaaSProfiler, the FaaS testing and profiling platform that we developed for this work. 
    more » « less
  5. While serverless platforms substantially simplify the provisioning, configuration, and management of cloud applications, implementing correct services on top of these platforms can present significant challenges to programmers. For example, serverless infrastructures introduce a host of failure modes that are not present in traditional deployments. Individual serverless instances can fail while others continue to make progress, correct but slow instances can be killed by the cloud provider as part of resource management, and providers will often respond to such failures by re-executing requests. For functions with side-effects, these scenarios can create behaviors that are not observable in serverful deployments. In this paper, we propose mu2sls, a framework for implementing microservice applications on serverless using standard Python code with two extra primitives: transactions and asynchronous calls. Our framework orchestrates user-written services to address several challenges, such as failures and re-executions, and provides formal guarantees that the generated serverless implementations are correct. To that end, we present a novel service specification abstraction and formalization of serverless implementations that facilitate reasoning about the correctness of a given application’s serverless implementation. This formalization forms the basis of the mu2sls prototype, which we then use to develop a few real-world microservice applications and show that the performance of the generated serverless implementations achieves significant scalability (3-5× the throughput of a sequential implementation) while providing correctness guarantees in the context of faults, re-execution, and concurrency. 
    more » « less