skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effect of coil size on transcranial magnetic stimulation (TMS) focality
In recent years, there is an increasing interest in noninvasive treatments for neurological disorders like Alzheimer and Depression. Transcranial magnetic stimulation (TMS) is one of the most effective methods used for this purpose. The performance of TMS highly depends on the coils used for the generation of magnetic field and induced electric field particularly their designs affecting depth and focality tradeoff characteristics. Among a variety of proposed and used TMS coil designs, circular coils are commonly used both in research and medical and clinical applications. In current study, we focus on changing the outer and inner sizes (diameter) and winding turns of ring coils and try to reach deeper brain regions without significant field strength decay. The induced electric field and the decay rate of the generated field with depth were studied with finite element method calculations. The results of the performed simulations indicate that larger diameter coils have a larger equivalent field emission aperture and produce larger footprint of induced electric field initially. However, their emission solid angles are smaller and, as a result, the field divergence or the decay rates of the generated field with depth are smaller as well, which give them a good potential to perform better for deep brain stimulation compared with that of smaller coil.  more » « less
Award ID(s):
1631820
PAR ID:
10109660
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
SPIE Proceedings Smart Biomedical and Physiological Sensor Technology XV; 110200Z (2019)
Volume:
11020
Page Range / eLocation ID:
38
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Transcranial magnetic stimulation (TMS) is widely used for noninvasive brain stimulation. However, existing TMS tools cannot deliver targeted neural stimulation to deep brain regions, even though many important neurological disorders originate from there. To design TMS tools capable of delivering deep and focused stimulation, we have developed both electric and magnetic field probes to evaluate and improve new designs and calibrate products. Previous works related to magnetic field measurement had no detailed description of probe design or optimization. In this work, we demonstrated a magnetic field probe made of a cylindrical inductor and an electrical field probe modified from Rogowski coil structure. Both have much smaller size and higher directivity than commercial dipole probes. Using probe, we can calibrate and monitor any new types of TMS coil or array design and verify measured results with the other probe. We mathematically analyze their characteristics and performance and obtained a two-dimensional vector plot of the induced electric field, which matched the measured results from the second type of probe. A commercial circular coil and a figure-8 coil, with relatively complex vector field distribution, were used as examples to demonstrate the high-resolution and accurate measurement capability of our probes. 
    more » « less
  2. Transcranial magnetic stimulation (TMS) is one of the most widely used noninvasive brain stimulation methods. It has been utilized for both treatment and diagnosis of many neural diseases, such as neuropathic pain and loss of function caused by stroke. Existing TMS tools cannot deliver focused electric field to targeted penetration depth even though many important neurological disorders are originated from there. A breakthrough is needed to achieve noninvasive, focused brain stimulation. We demonstrated using magnetic shield to achieve magnetic focusing without sacrificing significant amount of throughput. The shield is composed of multiple layers of copper ring arrays, which utilize induced current to generate counter magnetic fields. We experimentally set up a two-pole stimulator system to verify device simulation. A transient magnetic field probe was used for field measurements. The focusing effect highly depends on the geometric design of shield. A tight focal spot with a diameter of smaller than 5 mm (plotted in MATLAB contour map) can be achieved by using copper ring arrays. With properly designed array structures and ring locations, the combined original and induced counter fields can produce a tightly focused field distribution with enhanced field strength at a depth of 7.5 mm beyond the shield plane, which is sufficient to reach many deep and critical parts of a mouse brain. 
    more » « less
  3. Abstract Objective.To develop a coil placement optimization pipeline for transcranial magnetic stimulation (TMS) that improves over existing solutions by guaranteeing the feasibility of the solution when double-cone coils are used and/or targets are placed over nonconvex scalp areas like the occipital region.Approach.Our proposed pipeline estimates feasible candidate coil locations by projecting the coil’s geometry over the scalp around the target site and optimizing the coil’s orientation to maximize scalp exposure to coil while avoiding coil-scalp collision. Then, the reciprocity principle is used to select the best position/orientation among candidates and maximize the average electric field (E-field) intensity at the target site. Our pipeline was tested on five magnetic resonance imaging-derived human head models for three different targets (motor cortex, lateral cerebellum, and cerebellar inion) and four coil models (planar coil: MagStim D70; double-cone coils: MagStim DCC, MagVenture Cool-D-B80, and Deymed 120BFV).Main results.Our pipeline returned several feasible solutions for any combination of anatomical target and coil, calculated and screened over 2000 candidates in minutes, and resulted in optimal locations that satisfy the minimum coil-scalp distance, whereas the direct method returned feasible candidates for just one combination of target and coil, i.e. planar coil and convex target over the motor cortex. We also found that, when the objective is to maximize the E-field magnitude, the target-to-scalp extension line is a better axis for coil translation compared to the normal vector at the scalp’s surface, which is commonly used in existing approaches.Significance.We expand the use of numerical optimization for coil placement to double-cone coils, which are rapidly diffusing in research and clinical settings, and novel application domains, e.g. cerebellar TMS and ataxia treatment. 
    more » « less
  4. Background: Coil placement on the cerebellum lacks accuracy in targeting the intended lobules and limits the efficacy of cerebellar transcranial magnetic stimulation (TMS) in treating movement disorders. Objective: Develop a multiscale computational pipeline and method to rapidly predict the cellular response to cerebellar TMS and optimize the coil placement accordingly for lobule-specific activation. Methods: The pipeline integrates 3T T1/T2-weighted MRI scans of the human cerebellum, lobule parcellation, and finite element models of the TMS-induced electric (E-) fields for figure-of-eight coils (MagStim D70) and double-cone coils (Deymed 120BFV). A constrained optimization method is developed to estimate the fiber bundles from cerebellar cortices to deep nuclei and, for both coil types, find the coil placement and orientation that maximize the E-field intensity in a user-selected lobule. Multicompartmental Purkinje cell models with realistic axon geometries and Gaussian process regression are added to predict the recruitment in the Purkinje layer. Results: Our pipeline was tested in five individuals to target the left lobule VIII and resulted in normalized E-field intensities at the target 49.6±25.6% (D70) and 29.3±17.7% (120BFV) higher compared to standard coil positions (i.e., 3 cm left, 1 cm below the inion), mean±S.D. The minimum pulse intensity to recruit Purkinje cells on a 4 mm2-surface in the target decreased by 21.6% (range: 4.7-55.0%) and 10.7% (range: 7.9-18.2%), and the spillover to adjacent lobules decreased by 70.6±16.3% and 71.7±20.8% compared to standard positions (D70 and 120BFV, respectively). Conclusion: Our tools are effective at targeting specific lobules and pave the way toward patient-specific setups. 
    more » « less
  5. Magnetic Field Assisted Additive Manufacturing (MFAAM) enables 3D printing of magnetic materials of various shapes which exhibit a complex anisotropy energy surface containing contributions generated from different origins such as sample, particle, and agglomerate shape anisotropy, flow and field induced anisotropy, and particle crystal anisotropy. These novel magnet shapes require the need to measure the x, y, and z components of the magnetic dipole moment simultaneously to fully understand the magnetic reversal mechanism and unravel the complex magnetic anisotropy energy surface of 3D printed magnetic composites. This work aims to develop a triaxial vibrating sample magnetometer (VSM) by adding a z-coil set to a pre-existing biaxial VSM employing a modified Mallison coil set. The optimum size and location of the sensing coils were determined by modeling the sensitivity matrix of the z-coil set. The designed coil set was implemented using 3D printed spools, a manual coil winder, and gauge 38 copper wire. A 3D printed strontium ferrite nylon composite sample was used to estimate the sensitivity of the z-coils (50 mV/emu). The results herein are applicable for any VSM using a modified Mallison biaxial coil configuration allowing for a quick implementation on pre-existing systems. 
    more » « less