skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Numerical Study of Motion of Falling Conical Graupel
In the present study, the attitudes of freely-falling conical graupel with a realistic range of densities are investigated numerically by solving the transient Navier-Stokes equations and the body dynamics equations representing the 6-degrees-of-freedom motion. This framework allows us to determine the position and orientation of the graupel in response to the hydrodynamic force of the flow fields. The results show more significant horizontal movements than those cases with a fixed bulk density of ice assumed in our previous study. This is because the real graupel particles possess the density less than the bulk density of ice, which, in turn, leads to a relatively small mass and a relatively small set of moments of inertia. We demonstrate that, with the six degrees of freedom considered together, when Reynolds number is small, a typical damped oscillation occurs, whereas when Reynolds number is high, amplifying oscillation may occur which leads to more complicated and unpredictable flying attitudes such as tumbling. The drag coefficients obtained in the present study agree with the previous studies and can be approximated by that of spheres of the same Reynolds numbers. We also show that conical graupel can perform significant horizontal translations which can be on the order of 1 km in 1 h.  more » « less
Award ID(s):
1633921
PAR ID:
10063480
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Atmospheric research
Volume:
199
ISSN:
0169-8095
Page Range / eLocation ID:
82-92
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This paper introduces a new computational approach for the articulated joint/deformation actuation and motion control of robot manipulators with flexible components. Oscillations due to small deformations of relatively stiff robot components which cannot be ignored, are modeled in this study using the finite element (FE) floating frame of reference (FFR) formulation which employs two coupled sets of coordinates: the reference and elastic coordinates. The inverse dynamics, based on the FFR formulation, leads to driving forces associated with the deformation degrees of freedom. Because of the link flexibility, two approaches can be considered to determine the actuation forces required to achieve the desired motion trajectories. These two approaches are the partially constrained inverse dynamics (PCID) and the fully constrained inverse dynamics (FCID). The FCID approach, which will be considered in future investigations and allows for motion and shape control, can be used to achieve the desired motion trajectories and suppress undesirable oscillations. The new small-deformation PCID approach introduced in this study, on the other hand, allows for achieving the desired motion trajectories, determining systematically the actuation forces and moments associated with the robot joint and elastic degrees of freedom, and avoiding deteriorations in the vibration characteristics as measured by the differences between the inverse- and forward-dynamics solutions. A procedure for determining the actuation forces associated with the deformation degrees of freedom is proposed and is exemplified using piezoelectric actuators. The PCID solution is used to define a new set of algebraic equations that can be solved for the piezoelectric actuation voltages required to maintain the forward-dynamics oscillations within their inverse-dynamics limits. A planar two-link flexible-robot manipulator is presented to demonstrate the implementation of the joint/deformation actuation approach. The results obtained show deterioration in the robot precision if the deformation actuation is not considered. 
    more » « less
  2. In this paper, we inform about the development of a three degrees of freedom active platform for neuromechanical experiments. This platform, termed ‘the shaker’, generates single or combined horizontal, vertical, and tilting perturbations with a payload up to 1 kg. It can produce horizontal and vertical perturbations with amplitudes up to 1 cm at oscillation frequencies up to 10 Hz. The tilting motions were constrained to 15°/s. The shaker can measure single ground reaction forces (GRF) using up to four custom-build force plates mounted on the platform. Preliminary experiments with rats combining X-ray fluoroscopy, and three dimensional GRF during active perturbations were performed. They indicate that the shaker may play a key role in determining motor-control strategies in response to active perturbations during posture and locomotion in small animals. 
    more » « less
  3. We examine the linear stability of a homogeneous gas–solid suspension of small Stokes number particles, with a moderate mass loading, subject to a simple shear flow. The modulation of the gravitational force exerted on the suspension, due to preferential concentration of particles in regions of low vorticity, in response to an imposed velocity perturbation, can lead to an algebraic instability. Since the fastest growing modes have wavelengths small compared with the characteristic length scale ( $$U_{g}/{\it\Gamma}$$ ) and oscillate with frequencies large compared with $${\it\Gamma}$$ , $$U_{g}$$ being the settling velocity and $${\it\Gamma}$$ the shear rate, we apply the WKB method, a multiple scale technique. This analysis reveals the existence of a number density mode which travels due to the settling of the particles and a momentum mode which travels due to the cross-streamline momentum transport caused by settling. These modes are coupled at a turning point which occurs when the wavevector is nearly horizontal and the most amplified perturbations are those in which a momentum wave upstream of the turning point creates a downstream number density wave. The particle number density perturbations reach a finite, but large amplitude that persists after the wave becomes aligned with the velocity gradient. The growth of the amplitude of particle concentration and fluid velocity disturbances is characterised as a function of the wavenumber and Reynolds number ( $$\mathit{Re}=U_{g}^{2}/{\it\Gamma}{\it\nu}$$ ) using both asymptotic theory and a numerical solution of the linearised equations. 
    more » « less
  4. Abstract Conical intersections in two-state systems require a coordinate-dependent coupling. This paper identifies and investigates conical intersections in cyclic tight-binding system-bath Hamiltonians with an odd number of sites and a constant site-to-site coupling. In the absence of bath degrees of freedom, such tight-binding systems with a positive coupling parameter exhibit electronic frustration and a doubly-degenerate ground state. When these systems interact with a harmonic bath, the degeneracy becomes a conical intersection between the adiabatic ground and first excited states. Under weak system-bath coupling, overlapping wavefunctions associated with different sites give rise to distinct pathways with interfering geometric phases, which lead to considerably slower transfer dynamics. The effect is most pronounced in the presence of low-temperature dissipative baths characterized by a continuous spectral density. It is found that the transfer dynamics and equilibration time of a cyclic dissipative three-site system with a positive coupling exceeds that of a similar three-site system with a negative coupling, as well as that of cyclic four-site systems, by an order of magnitude. 
    more » « less
  5. We study the nonequilibrium dynamics of axionlike particles (ALP) coupled to Standard Model degrees of freedom in thermal equilibrium. The quantum master equation (QME) for the ALP reduced density matrix is derived to leading order in the coupling of the ALP to the thermal bath, but to all orders of the bath couplings to degrees of freedom within or beyond the Standard Model other than the ALP. The QME describes the damped oscillation dynamics of an initial misaligned ALP condensate, thermalization with the bath, decoherence, and entropy production within a unifying framework. The ALP energy density features two components: a “cold” component from the misaligned condensate and a “hot” component from thermalization with the bath. 
    more » « less