skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Continuous and Discrete-time Accelerated Stochastic Mirror Descent for Strongly Convex Functions
We provide a second-order stochastic differential equation (SDE), which characterizes the continuous-time dynamics of accelerated stochastic mirror descent (ASMD) for strongly convex functions. This SDE plays a central role in designing new discrete-time ASMD algorithms via numerical discretization, and providing neat analyses of their convergence rates based on Lyapunov functions. Our results suggest that the only existing ASMD algorithm, namely, AC-SA proposed in Ghadimi & Lan (2012) is one instance of its kind, and we can actually derive new instances of ASMD with fewer tuning parameters. This sheds light on revisiting accelerated stochastic optimization through the lens of SDEs, which can lead to a better understanding of acceleration in stochastic optimization, as well as new simpler algorithms. Numerical experiments on both synthetic and real data support our theory.  more » « less
Award ID(s):
1652539 1618948
PAR ID:
10063545
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Conference on Machine Learning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We provide new adaptive first-order methods for constrained convex optimization. Our main algorithms AdaACSA and AdaAGD+ are accelerated methods, which are universal in the sense that they achieve nearly-optimal convergence rates for both smooth and non-smooth functions, even when they only have access to stochastic gradients. In addition, they do not require any prior knowledge on how the objective function is parametrized, since they automatically adjust their per-coordinate learning rate. These can be seen as truly accelerated Adagrad methods for constrained optimization. We complement them with a simpler algorithm AdaGrad+ which enjoys the same features, and achieves the standard non-accelerated convergence rate. We also present a set of new results involving adaptive methods for unconstrained optimization and variational inequalities arising from monotone operators. 
    more » « less
  2. We provide new adaptive first-order methods for constrained convex optimization. Our main algorithms AdaACSA and AdaAGD+ are accelerated methods, which are universal in the sense that they achieve nearly-optimal convergence rates for both smooth and non-smooth functions, even when they only have access to stochastic gradients. In addition, they do not require any prior knowledge on how the objective function is parametrized, since they automatically adjust their per-coordinate learning rate. These can be seen as truly accelerated Adagrad methods for constrained optimization. We complement them with a simpler algorithm AdaGrad+ which enjoys the same features, and achieves the standard non-accelerated convergence rate. We also present a set of new results involving adaptive methods for unconstrained optimization and variational inequalities arising from monotone operators. 
    more » « less
  3. We present a new framework to analyze accelerated stochastic mirror descent through the lens of continuous-time stochastic dynamic systems. It enables us to design new algorithms, and perform a unified and simple analysis of the convergence rates of these algorithms. More specifically, under this framework, we provide a Lyapunov function based analysis for the continuous-time stochastic dynamics, as well as several new discrete-time algorithms derived from the continuous-time dynamics. We show that for general convex objective functions, the derived discrete-time algorithms attain the optimal convergence rate. Empirical experiments corroborate our theory. 
    more » « less
  4. Bach, Francis; Blei, David; Scholkopf, Bernhard (Ed.)
    This paper investigates the asymptotic behaviors of gradient descent algorithms (particularly accelerated gradient descent and stochastic gradient descent) in the context of stochastic optimization arising in statistics and machine learning, where objective functions are estimated from available data. We show that these algorithms can be computationally modeled by continuous-time ordinary or stochastic differential equations. We establish gradient flow central limit theorems to describe the limiting dynamic behaviors of these computational algorithms and the large-sample performances of the related statistical procedures, as the number of algorithm iterations and data size both go to infinity, where the gradient flow central limit theorems are governed by some linear ordinary or stochastic differential equations, like time-dependent Ornstein-Uhlenbeck processes. We illustrate that our study can provide a novel unified framework for a joint computational and statistical asymptotic analysis, where the computational asymptotic analysis studies the dynamic behaviors of these algorithms with time (or the number of iterations in the algorithms), the statistical asymptotic analysis investigates the large-sample behaviors of the statistical procedures (like estimators and classifiers) that are computed by applying the algorithms; in fact, the statistical procedures are equal to the limits of the random sequences generated from these iterative algorithms, as the number of iterations goes to infinity. The joint analysis results based on the obtained gradient flow central limit theorems lead to the identification of four factors—learning rate, batch size, gradient covariance, and Hessian—to derive new theories regarding the local minima found by stochastic gradient descent for solving non-convex optimization problems. 
    more » « less
  5. Bach, Francis; Blei, David; Scholkopf, Bernhard (Ed.)
    This paper investigates the asymptotic behaviors of gradient descent algorithms (particularly accelerated gradient descent and stochastic gradient descent) in the context of stochastic optimization arising in statistics and machine learning, where objective functions are estimated from available data. We show that these algorithms can be computationally modeled by continuous-time ordinary or stochastic differential equations. We establish gradient flow central limit theorems to describe the limiting dynamic behaviors of these computational algorithms and the large-sample performances of the related statistical procedures, as the number of algorithm iterations and data size both go to infinity, where the gradient flow central limit theorems are governed by some linear ordinary or stochastic differential equations, like time-dependent Ornstein-Uhlenbeck processes. We illustrate that our study can provide a novel unified framework for a joint computational and statistical asymptotic analysis, where the computational asymptotic analysis studies the dynamic behaviors of these algorithms with time (or the number of iterations in the algorithms), the statistical asymptotic analysis investigates the large-sample behaviors of the statistical procedures (like estimators and classifiers) that are computed by applying the algorithms; in fact, the statistical procedures are equal to the limits of the random sequences generated from these iterative algorithms, as the number of iterations goes to infinity. The joint analysis results based on the obtained The joint analysis results based on the obtained gradient flow central limit theorems lead to the identification of four factors---learning rate, batch size, gradient covariance, and Hessian---to derive new theories regarding the local minima found by stochastic gradient descent for solving non-convex optimization problems. 
    more » « less