skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A hardware-in-the-loop emulation testbed for high fidelity and reproducible network experiments
The transformation of innovative research ideas to production systems is highly dependent on the capability of performing realistic and reproducible network experiments. In this work, we present a network testbed consisting of container-based network emulation and physical devices to advocate high fidelity and reproducible networking experiments. The testbed integrates network emulators (Mininet), a distributed control environment (ONOS), and physical switches (Pica8). The testbed (1) offers functional fidelity through unmodified code execution in emulated networks, (2) supports large-scale network experiments using lightweight OS-level virtualization techniques and capable of running across distributed physical machines, (3) provides the topology flexibility, and (4) enhances the repeatability and reproducibility of network experiments. We validate the testbed fidelity through extensive experiments under different network conditions (e.g., varying topology and traffic pattern). We also use the testbed to reproduce key results from published network experiments, such as Hedera, a scalable and adaptive network traffic flow scheduling system.  more » « less
Award ID(s):
1730488
PAR ID:
10063958
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2017 Winter Simulation Conference (WSC)
Page Range / eLocation ID:
408 to 418
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Network traffic modeling plays an important role in the generation of realistic network traffic in test environments. Especially in cases where researchers carry out experiments with real production-like traffic, as seen in specific home, enterprise, campus, LAN, or WAN networks. We present our ongoing work on a new framework that enables the methodical creation of application-agnostic traffic models from given network traces of a known network topology. The framework then uses these models to generate realistic traffic on a given network topology. We share a preliminary evaluation of the framework based on repeatable experiments where we model a typical web application traffic and then regenerate the traffic based on the model in a test network on our VTS (Virtual Topology Services) testbed. 
    more » « less
  2. With the ever-increasing size of training models and datasets, network communication has emerged as a major bottleneck in distributed deep learning training. To address this challenge, we propose an optical distributed deep learning (ODDL) architecture. ODDL utilizes a fast yet scalable all-optical network architecture to accelerate distributed training. One of the key features of the architecture is its flow-based transmit scheduling with fast reconfiguration. This allows ODDL to allocate dedicated optical paths for each traffic stream dynamically, resulting in low network latency and high network utilization. Additionally, ODDL provides physically isolated and tailored network resources for training tasks by reconfiguring the optical switch using LCoS-WSS technology. The ODDL topology also uses tunable transceivers to adapt to time-varying traffic patterns. To achieve accurate and fine-grained scheduling of optical circuits, we propose an efficient distributed control scheme that incurs minimal delay overhead. Our evaluation on real-world traces showcases ODDL’s remarkable performance. When implemented with 1024 nodes and 100 Gbps bandwidth, ODDL accelerates VGG19 training by 1.6× and 1.7× compared to conventional fat-tree electrical networks and photonic SiP-Ring architectures, respectively. We further build a four-node testbed, and our experiments show that ODDL can achieve comparable training time compared to that of anidealelectrical switching network. 
    more » « less
  3. P4 serves as a programming language for configuring flexible and programmable network data planes, facilitating the development of custom protocols and programmable switches, and driving innovation in software-defined networking and network function virtualization. While the Linux container based network emulator, Mininet, coupled with the BMv2 software P4 switch, is widely used for rapid prototyping of P4-based applications, BMv2’s diminished performance raises fidelity concerns under high traffic and large network scenarios. In this paper, we introduce a lightweight virtual time system integrated into Mininet with BMv2 to enhance fidelity and scalability. By applying a time dilation factor (TDF) to interactions between containers and the physical machine, we optimize the emulated P4 network’s perceived speed from the application processes’ perspective. System evaluation demonstrates accurate emulation of significantly larger networks under high loads with minimal system overhead. We showcase our system’s utility through two network applications: an emulation of a TCP SYN flood attack and an ECMP load balancer. Evaluating against a production-grade software switch, Open vSwitch, and a physical testbed, we highlight the virtual time system’s improvement in temporal fidelity despite the observed performance degradation in BMv2 software switches. 
    more » « less
  4. The ongoing electrification of the transportation fleet will increase the load on the electric power grid. Since both the transportation network and the power grid already experience periods of significant stress, joint analyses of both infrastructures will most likely be necessary to ensure acceptable operation in the future. To enable such analyses, this article presents an open-source testbed that jointly simulates high-fidelity models of both the electric distribution system and the transportation network. The testbed utilizes two open-source simulators, OpenDSS to simulate the electric distribution system and the microscopic traffic simulator SUMO to simulate the traffic dynamics. Electric vehicle charging links the electric distribution system and the transportation network models at vehicle locations determined using publicly available parcel data. Leveraging high-fidelity synthetic electric distribution system data from the SMART-DS project and transportation system data from OpenStreetMap, this testbed models the city of Greensboro, NC down to the household level. Moreover, the methodology and the supporting scripts released with the testbed allow adaption to other areas where high-fidelity geolocated OpenDSS datasets are available. After describing the components and usage of the testbed, we exemplify applications enabled by the testbed via two scenarios modeling the extreme stresses encountered during evacuations. 
    more » « less
  5. The ongoing electrification of the transportation fleet will increase the load on the electric power grid. Since both the transportation network and the power grid already experience periods of significant stress, joint analyses of both infrastructures will most likely be necessary to ensure acceptable operation in the future. To enable such analyses, this paper presents an open- source testbed that jointly simulates high-fidelity models of both the electric distribution system and the transportation network. The testbed utilizes two open-source simulators, OpenDSS to simulate the electric distribution system and the microscopic traffic simulator SUMO to simulate the traffic dynamics. Electric vehicle charging links the electric distribution system and the transportation network models at vehicle locations determined using publicly available parcel data. Leveraging high-fidelity synthetic electric distribution system data from the SMART-DS project and transportation system data from OpenStreetMap, this testbed models the city of Greensboro, NC down to the household level. Moreover, the methodology and the supporting scripts released with the testbed allow adaption to other areas where high-fidelity geolocated OpenDSS datasets are available. After describing the components and usage of the testbed, we exemplify applications enabled by the testbed via two scenarios modeling the extreme stresses encountered during evacuations. 
    more » « less