The ongoing electrification of the transportation fleet will increase the load on the electric power grid. Since both the transportation network and the power grid already experience periods of significant stress, joint analyses of both infrastructures will most likely be necessary to ensure acceptable operation in the future. To enable such analyses, this paper presents an open- source testbed that jointly simulates high-fidelity models of both the electric distribution system and the transportation network. The testbed utilizes two open-source simulators, OpenDSS to simulate the electric distribution system and the microscopic traffic simulator SUMO to simulate the traffic dynamics. Electric vehicle charging links the electric distribution system and the transportation network models at vehicle locations determined using publicly available parcel data. Leveraging high-fidelity synthetic electric distribution system data from the SMART-DS project and transportation system data from OpenStreetMap, this testbed models the city of Greensboro, NC down to the household level. Moreover, the methodology and the supporting scripts released with the testbed allow adaption to other areas where high-fidelity geolocated OpenDSS datasets are available. After describing the components and usage of the testbed, we exemplify applications enabled by the testbed via two scenarios modeling the extreme stresses encountered during evacuations. 
                        more » 
                        « less   
                    
                            
                            GreenEVT: Greensboro Electric Vehicle Testbed
                        
                    
    
            The ongoing electrification of the transportation fleet will increase the load on the electric power grid. Since both the transportation network and the power grid already experience periods of significant stress, joint analyses of both infrastructures will most likely be necessary to ensure acceptable operation in the future. To enable such analyses, this article presents an open-source testbed that jointly simulates high-fidelity models of both the electric distribution system and the transportation network. The testbed utilizes two open-source simulators, OpenDSS to simulate the electric distribution system and the microscopic traffic simulator SUMO to simulate the traffic dynamics. Electric vehicle charging links the electric distribution system and the transportation network models at vehicle locations determined using publicly available parcel data. Leveraging high-fidelity synthetic electric distribution system data from the SMART-DS project and transportation system data from OpenStreetMap, this testbed models the city of Greensboro, NC down to the household level. Moreover, the methodology and the supporting scripts released with the testbed allow adaption to other areas where high-fidelity geolocated OpenDSS datasets are available. After describing the components and usage of the testbed, we exemplify applications enabled by the testbed via two scenarios modeling the extreme stresses encountered during evacuations. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2145564
- PAR ID:
- 10556510
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Systems Journal
- Volume:
- 18
- Issue:
- 1
- ISSN:
- 1932-8184
- Page Range / eLocation ID:
- 600 to 611
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We present a unique virtual testbed that combines a data-plane programmable network emulator and a power distribution system simulator to evaluate smart grid security and resilience applications. The testbed employs a virtual time system for effective simulation synchronization and fidelity enhancement. We showcase the advantages of the simulation testbed through an anomaly detection case study.more » « less
- 
            When electrified transit systems make grid aware choices, improved social welfare is achieved by scheduling charging at low grid impact locations and times causing reduced loss, minimal power quality issues and reduced grid stress. Electrifying transit fleet has numerous challenges like non availability of buses during charging, varying charging costs, etc., that are related the electric grid behavior. However, transit systems do not have access to the information about the co-evolution of the grid’s power flow and therefore cannot account for the power grid’s needs in its day to day operation. In this paper we propose a framework of transportation-grid co-simulation analyzing the spatio-temporal interaction between the transit operations with electric buses and the power distribution grid. Real-world data for a day’s traffic from Chattanooga city’s transit system is simulated in SUMO and integrated with a realistic distribution grid simulation (using GridLAB-D) to understand the grid impact due to the transit electrification. Charging information is obtained from the transportation simulation to feed into grid simulation to assess the impact of charging. We also discuss the impact to the grid with higher degree of Transit electrification that further necessitates such an integrated Transportation-Grid co-simulation to operate the integrated system optimally. Our future work includes extending the platform for optimizing the charging and trip assignment operations.more » « less
- 
            As the number of electric vehicles (EVs) within society rapidly increase, the concept of maximizing its efficiency within the electric smart grid becomes crucial. This research presents the impacts of integrating EV charging infrastructures within a smart grid through a vehicle to grid (V2G) program. It also observes the circulation of electric charge within the system so that the electric grid does not become exhausted during peak hours. This paper will cover several different case studies and will analyze the best and worst scenarios for the power losses and voltage profiles in the power distribution system. Specifically, we seek to find the optimal location as well as the ideal number of EVs in the distribution system while minimizing its power losses and optimizing its voltage profile. Verification of the results are primarily conducted using GUIs created on MATLAB. These simulations aim to develop a better understanding of the potential impacts of electric vehicles in smart grids, such as power quality and monetary benefits for utility companies and electric vehicle usersmore » « less
- 
            The integration of electric vehicles (EVs) into the electric power distribution system poses numerous challenges and opportunities for optimizing energy management and system operations. Electric vehicle grid interfaces (EVGIs), essentially bidirectional power converters, allow for charging/grid-to-vehicle (G2V) and discharging/vehicle-to-grid (V2G) power transfers. A power dispatch estimation (PDE) model for V2G, based on availability of EVs in a distribution system and capabilities of the distribution system, is needed to assist in grid operations. This paper presents the development of a PDE model based on nodal power flows to capture the complex spatiotemporal dependencies inherent in G2V and V2G patterns. The hierarchical structure of a distribution system, feeder to EVGI node, is taken into consideration for PDE. Typical PDE estimation results are presented for the IEEE 34 test node feeder distribution system allocated with EVGIs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    