skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Phylogeny and evolution of the cryptic fungus‐farming ant genus Myrmicocrypta F. Smith (Hymenoptera: Formicidae) inferred from multilocus data
Abstract Fungus‐farming ants (Hymenoptera: Formicidae) have become model systems for exploring questions regarding the evolution of symbiosis. However, robust phylogenetic studies of both the ant agriculturalists and their fungal cultivars are necessary for addressing whether or not observed ant–fungus associations are the result of coevolution and, if so, whether that coevolution has been strict or diffuse. Here we focus on the evolutionary relationships of the species within the ant genusMyrmicocryptaand of their fungal cultivars. The fungus‐farming ant genusMyrmicocryptawas created by Fr. Smith in 1860 based on a single alate queen. Since then, 31 species and subspecies have been described. Until now, the genus has not received any taxonomic treatment and the relationships of the species within the genus have not been tested. Our molecular analyses, using ∼40 putative species and six protein‐coding (nuclear and mitochondrial) gene fragments, recoverMyrmicocryptaas monophyletic and as the sister group of the genusMycocepurusForel. The speciesM. tuberculataWeber is recovered as the sister to the rest ofMyrmicocrypta. The time‐calibrated phylogeny recovers the age of stem groupMyrmicocryptaplus its sister group as 45 Ma, whereas the inferred age for the crown groupMyrmicocryptais recovered as 27 Ma. Ancestral character‐state analyses suggest that the ancestor ofMyrmicocryptahad scale‐like or squamate hairs and that, although such hairs were once considered diagnostic for the genus, the alternative state of erect simple hairs has evolved at least seven independent times. Ancestral‐state analyses of observed fungal cultivar associations suggest that the most recent common ancestor ofMyrmicocryptacultivated clade 2 fungal species and that switches to clade 1 fungi have occurred at least five times. It is our hope that these results will encourage additional species‐level phylogenies of fungus‐farming ants and their fungal cultivars, which are necessary for understanding the evolutionary processes that gave rise to agriculture in ants and that produced the current diversity of mutualistic ant–fungus interactions.  more » « less
Award ID(s):
1654829 1456964
PAR ID:
10064044
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Systematic Entomology
Volume:
44
Issue:
1
ISSN:
0307-6970
Format(s):
Medium: X Size: p. 139-162
Size(s):
p. 139-162
Sponsoring Org:
National Science Foundation
More Like this
  1. Camacho, Gabriela P (Ed.)
    Abstract The evolutionary history of fungus-farming ants has been the subject of multiple morphological, molecular phylogenetic, and phylogenomic studies. Due to its rarity, however, the phylogenetic position, natural history, and fungal associations of the monotypic genus Paramycetophylax Kusnezov have remained enigmatic. Here we report the first excavations of colonies of Paramycetophylax bruchi (Santschi) and describe its nest architecture and natural history. Utilizing specimens from these collections, we generated ultraconserved-element (UCE) data to determine the evolutionary position of Paramycetophylax within the fungus-farming ants and ribosomal ‘fungal barcoding’ ITS sequence data to identify the fungal cultivar. A maximum-likelihood phylogenomic analysis indicates that the genus Paramycetophylax is the sister group of the yeast-cultivating Cyphomyrmex rimosus group, an unexpected result that renders the genus Cyphomyrmex Mayr paraphyletic. A Bayesian divergence-dating analysis indicates that Paramycetophylax diverged from its sister group around 36 mya (30–42 mya, HPD) in the late Eocene-early Oligocene, a period of global cooling, expansion of grasslands, and large-scale extinction of tropical organisms. Bayesian analysis of the fungal cultivar ITS gene fragment indicates that P. bruchi practices lower agriculture and that the cultivar grown by P. bruchi belongs to the Clade 1 group of lower-attine fungi, a clade that, interestingly, also includes the C. rimosus-group yeast cultivars. Based on these results, we conclude that a better understanding of P. bruchi and its fungal cultivar, including whole-genome data, is critical for reconstructing the origin of yeast agriculture, a major transition in the evolution of fungus-farming ants. 
    more » « less
  2. Fungi shape the diversity of life. Characterizing the evolution of fungi is critical to understanding symbiotic associations across kingdoms. In this study, we investigate the genomic and metabolomic diversity of the genus Escovopsis , a specialized parasite of fungus-growing ant gardens. Based on 25 high-quality draft genomes, we show that Escovopsis forms a monophyletic group arising from a mycoparasitic fungal ancestor 61.82 million years ago (Mya). Across the evolutionary history of fungus-growing ants, the dates of origin of most clades of Escovopsis correspond to the dates of origin of the fungus-growing ants whose gardens they parasitize. We reveal that genome reduction, determined by both genomic sequencing and flow cytometry, is a consistent feature across the genus Escovopsis, largely occurring in coding regions, specifically in the form of gene loss and reductions in copy numbers of genes. All functional gene categories have reduced copy numbers, but resistance and virulence genes maintain functional diversity. Biosynthetic gene clusters (BGCs) contribute to phylogenetic differences among Escovopsis spp., and sister taxa in the Hypocreaceae. The phylogenetic patterns of co-diversification among BGCs are similarly exhibited across mass spectrometry analyses of the metabolomes of Escovopsis and their sister taxa. Taken together, our results indicate that Escovopsis spp. evolved unique genomic repertoires to specialize on the fungus-growing ant-microbe symbiosis. 
    more » « less
  3. Fungus-farming ants cultivate multiple lineages of fungi for food, but, because fungal cultivar relationships are largely unresolved, the history of fungus-ant coevolution remains poorly known. We designed probes targeting >2000 gene regions to generate a dated evolutionary tree for 475 fungi and combined it with a similarly generated tree for 276 ants. We found that fungus-ant agriculture originated ~66 million years ago when the end-of-Cretaceous asteroid impact temporarily interrupted photosynthesis, causing global mass extinctions but favoring the proliferation of fungi. Subsequently, ~27 million years ago, one ancestral fungal cultivar population became domesticated, i.e., obligately mutualistic, when seasonally dry habitats expanded in South America, likely isolating the cultivar population from its free-living, wet forest–dwelling conspecifics. By revealing these and other major transitions in fungus-ant coevolution, our results clarify the historical processes that shaped a model system for nonhuman agriculture. 
    more » « less
  4. Evolutionary adaptations for maintaining beneficial microbes are hallmarks of mutualistic evolution. Fungus-farming “attine” ant species have complex cuticular modifications and specialized glands that house and nourish antibiotic-producing Actinobacteria symbionts, which in turn protect their hosts’ fungus gardens from pathogens. Here we reconstruct ant–Actinobacteria evolutionary history across the full range of variation within subtribe Attina by combining dated phylogenomic and ultramorphological analyses. Ancestral-state analyses indicate the ant–Actinobacteria symbiosis arose early in attine-ant evolution, a conclusion consistent with direct observations of Actinobacteria on fossil ants in Oligo-Miocene amber. qPCR indicates that the dominant ant-associated Actinobacteria belong to the genus Pseudonocardia . Tracing the evolutionary trajectories of Pseudonocardia -maintaining mechanisms across attine ants reveals a continuum of adaptations. In Myrmicocrypta species, which retain many ancestral morphological and behavioral traits, Pseudonocardia occur in specific locations on the legs and antennae, unassociated with any specialized structures. In contrast, specialized cuticular structures, including crypts and tubercles, evolved at least three times in derived attine-ant lineages. Conspicuous caste differences in Pseudonocardia -maintaining structures, in which specialized structures are present in worker ants and queens but reduced or lost in males, are consistent with vertical Pseudonocardia transmission. Although the majority of attine ants are associated with Pseudonocardia , there have been multiple losses of bacterial symbionts and bacteria-maintaining structures in different lineages over evolutionary time. The early origin of ant– Pseudonocardia mutualism and the multiple evolutionary convergences on strikingly similar anatomical adaptations for maintaining bacterial symbionts indicate that Pseudonocardia have played a critical role in the evolution of ant fungiculture. 
    more » « less
  5. Abstract Escovopsisis a diverse group of fungi, which are considered specialized parasites of the fungal cultivars of fungus-growing ants. The lack of a suitable taxonomic framework and phylogenetic inconsistencies have long hamperedEscovopsisresearch. The aim of this study is to reassess the genusEscovopsisusing a taxonomic approach and a comprehensive multilocus phylogenetic analysis, in order to set the basis of the genus systematics and the stage for futureEscovopsisresearch. Our results support the separation ofEscovopsisinto three distinct genera. In light of this, we redefineEscovopsisas a monophyletic clade whose main feature is to form terminal vesicles on conidiophores. Consequently,E. kreiseliiandE. trichodermoideswere recombined into two new genera,SympodioroseaandLuteomyces, asS.kreiseliiandL.trichodermoides, respectively. This study expands our understanding of the systematics ofEscovopsisand related genera, thereby facilitating future research on the evolutionary history, taxonomic diversity, and ecological roles of these inhabitants of the attine ant colonies. 
    more » « less