skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the RR Lyrae Stars in Globulars. V. The Complete Near-infrared ( JHK s ) Census of ω Centauri RR Lyrae Variables
Award ID(s):
1714534
PAR ID:
10064129
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
The Astronomical Journal
Volume:
155
Issue:
3
ISSN:
1538-3881
Page Range / eLocation ID:
137
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We provide homogeneous optical ( U B V R I ) and near-infrared (NIR, J H K ) time series photometry for 254 cluster ( ω Cen, M 4) and field RR Lyrae (RRL) variables. We ended up with more than 551 000 measurements, of which only 9% are literature data. For 94 fundamental (RRab) and 51 first overtones (RRc) we provide a complete optical/NIR characterization (mean magnitudes, luminosity amplitudes, epoch of the anchor point). The NIR light curves of these variables were adopted to provide new light-curve templates for both RRc and RRab variables. The templates for the J and the H bands are newly introduced, together with the use of the pulsation period to discriminate among the different RRab templates. To overcome subtle uncertainties in the fit of secondary features of the light curves we provide two independent sets of analytical functions (Fourier and periodic Gaussian series). The new templates were validated by using 26 ω Cen and Bulge RRLs. We find that the difference between the measured mean magnitude along the light curve and the mean magnitude estimated by using the template on a single randomly extracted phase point is better than 0.01 mag ( σ = 0.04 mag). We also validated the template on variables for which at least three phase points were available, but without information on the phase of the anchor point. We find that the accuracy of the mean magnitudes is also ∼0.01 mag ( σ = 0.04 mag). The new templates were applied to the Large Magellanic Cloud (LMC) globular cluster Reticulum and by using literature data and predicted PLZ relations we find true distance moduli μ = 18.47 ± 0.10 (rand.) ± 0.03 (syst.) mag ( J ) and 18.49 ± 0.09 ± 0.05 mag ( K ). We also used literature optical and mid-infrared data and we found a mean μ of 18.47 ± 0.02 ± 0.06 mag, suggesting that Reticulum is ∼1 kpc closer than the LMC. 
    more » « less
  2. null (Ed.)
    We present a chemo-dynamical study of the Orphan stellar stream using a catalog of RR Lyrae pulsating variable stars for which photometric, astrometric, and spectroscopic data are available. Employing low-resolution spectra from the Sloan Digital Sky Survey (SDSS), we determined line-of-sight velocities for individual exposures and derived the systemic velocities of the RR Lyrae stars. In combination with the stars’ spectroscopic metallicities and Gaia EDR3 astrometry, we investigated the northern part of the Orphan stream. In our probabilistic approach, we found 20 single mode RR Lyrae variables likely associated with the Orphan stream based on their positions, proper motions, and distances. The acquired sample permitted us to expand our search to nonvariable stars in the SDSS dataset, utilizing line-of-sight velocities determined by the SDSS. We found 54 additional nonvariable stars linked to the Orphan stream. The metallicity distribution for the identified red giant branch stars and blue horizontal branch stars is, on average, −2.13 ± 0.05 dex and −1.87 ± 0.14 dex, with dispersions of 0.23 and 0.43 dex, respectively. The metallicity distribution of the RR Lyrae variables peaks at −1.80 ± 0.06 dex and a dispersion of 0.25 dex. Using the collected stellar sample, we investigated a possible link between the ultra-faint dwarf galaxy Grus II and the Orphan stream. Based on their kinematics, we found that both the stream RR Lyrae and Grus II are on a prograde orbit with similar orbital properties, although the large uncertainties on the dynamical properties render an unambiguous claim of connection difficult. At the same time, the chemical analysis strongly weakens the connection between both. We argue that Grus II in combination with the Orphan stream would have to exhibit a strong inverse metallicity gradient, which to date has not been detected in any Local Group system. 
    more » « less
  3. ABSTRACT We use 3653 (2661 RRab, 992 RRc) RR Lyrae stars (RRLs) with 7D (3D position, 3D velocity, and metallicity) information selected from Sloan Digital Sky Survey, Large Sky Area Multi-Object Fiber Spectroscopic Telescope, and Gaia EDR3, and divide the sample into two Oosterhoff groups (Oo I and Oo II) according to their amplitude–period behaviour in the Bailey diagram. We present a comparative study of these two groups based on chemistry, kinematics, and dynamics. We find that Oo I RRLs are relatively more metal-rich, with predominately radially dominated orbits and large eccentricities, while Oo II RRLs are relatively more metal-poor, and have mildly radially dominated orbits. The Oosterhoff dichotomy of the Milky Way’s halo is more apparent for the inner-halo region than for the outer-halo region. Additionally, we also search for this phenomenon in the haloes of the two largest satellite galaxies, the Large and Small Magellanic clouds, and compare over different bins in metallicity. We find that the Oosterhoff dichotomy is not immutable, and varies based on position in the Galaxy and from galaxy to galaxy. We conclude that the Oosterhoff dichotomy is the result of a combination of stellar and galactic evolution, and that it is much more complex than the dichotomy originally identified in Galactic globular clusters. 
    more » « less
  4. null (Ed.)
  5. Abstract We report the detection of three RR Lyrae (RRL) stars (two RRc and one RRab) in the ultra-faint dwarf (UFD) galaxy Centaurus I (Cen I) and two Milky Way (MW) δ Scuti/SX Phoenicis stars based on multi-epoch giz DECam observations. The two RRc stars are located within two times the half-light radius ( r h ) of Cen I, while the RRab star (CenI-V3) is at ∼6 r h . The presence of three distant RRL stars clustered this tightly in space represents a 4.7 σ excess relative to the smooth distribution of RRL in the Galactic halo. Using the newly detected RRL stars, we obtain a distance modulus to Cen I of μ 0 = 20.354 ± 0.002 mag ( σ = 0.03 mag), a heliocentric distance of D ⊙ = 117.7 ± 0.1 kpc ( σ = 1.6 kpc), with systematic errors of 0.07 mag and 4 kpc. The location of the Cen I RRL stars in the Bailey diagram is in agreement with other UFD galaxies (mainly Oosterhoff II). Finally, we study the relative rate of RRc+RRd (RRcd) stars ( f cd ) in UFD and classical dwarf galaxies. The full sample of MW dwarf galaxies gives a mean of f cd = 0.28. While several UFD galaxies, such as Cen I, present higher RRcd ratios, if we combine the RRL populations of all UFD galaxies, the RRcd ratio is similar to the one obtained for the classical dwarfs ( f cd ∼ 0.3). Therefore, there is no evidence for a different fraction of RRcd stars in UFD and classical dwarf galaxies. 
    more » « less