Nonlinear electrokinetic phenomena, where electrically driven fluid flows depend nonlinearly on the applied voltage, are commonly encountered in aqueous suspensions of colloidal particles. A prime example is the induced-charge electro-osmosis, driven by an electric field acting on diffuse charge induced near a polarizable surface. Nonlinear electrohydrodynamic flows also occur in non-polar fluids, driven by the electric field acting on space charge induced by conductivity gradients. Here, we analyse the flows about a charge-neutral spherical solid particle in an applied uniform electric field that arise from conductivity dependence on local field intensity. The flow pattern varies with particle conductivity: while the flow about a conducting particle has a quadrupolar pattern similar to induced-charge electro-osmosis, albeit with opposite direction, the flow about an insulating particle has a more complex structure. We find that this flow induces a force on a particle near an electrode that varies non-trivially with particle conductivity: while it is repulsive for perfectly insulating particles and particles more conductive than the suspending medium, there exists a range of particle conductivities where the force is attractive. The force decays as the inverse square of the distance to the electrode and thus can dominate the dielectrophoretic attraction due to the image dipole, which falls off with the fourth power with the distance. This electrohydrodynamic lift opens new possibilities for colloidal manipulation and driven assembly by electric fields.
more »
« less
Revisit of wall-induced lateral migration in particle electrophoresis through a straight rectangular microchannel: effects of particle zeta potential
Previous studies have reported a lateral migration in particle electrophoresis through a straight rectangular microchannel. This phenomenon arises from the inherent wall-induced electrical lift that can be exploited to focus and separate particles for microfluidic applications. Such a dielectrophoretic-like force has been recently found to vary with the buffer concentration. We demonstrate in this work that the particle zeta potential also has a significant effect on the wall-induced electrical lift. We perform an experimental study of the lateral migration of equal-sized polystyrene particles with varying surface charges under identical electrokinetic flow conditions. Surprisingly, an enhanced focusing is observed for particles with a faster electrokinetic motion, which indicates a substantially larger electrical lift for particles with a smaller zeta potential. We speculate this phenomenon may be correlated with the particle surface conduction that is a strong function of particle and fluid properties.
more »
« less
- Award ID(s):
- 1704379
- PAR ID:
- 10064136
- Date Published:
- Journal Name:
- ELECTROPHORESIS
- ISSN:
- 0173-0835
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Analyte migration order is a major aspect in all migration-based analytical separations methods. Presented here is the manipulation of the migration order of microparticles in an insulator-based electrokinetic separation. Three distinct particle mixtures were studied: a binary mixture of particles with similar electrical charge and different sizes, and two tertiary mixtures of particles of distinct sizes. Each one of the particle mixtures was separated twice, the first separation was performed under low voltage (linear electrokinetic regime) and the second separation was performed under high voltage (nonlinear electrokinetic regime). Linear electrophoresis, which discriminates particles by charge, is the dominant electrokinetic effect in the linear regime; while nonlinear electrophoresis, which discriminates particles by size and shape, is the dominant electrokinetic effect in the nonlinear regime. The separation results obtained with the three particle mixtures illustrated that particle elution order can be changed by switching from the linear electrokinetic regime to the nonlinear electrokinetic regime. Also, in all cases, better separation performances in terms of separation resolution (Rs) were obtained by employing the nonlinear electrokinetic regime allowing nonlinear electrophoresis to be the discriminatory electrokinetic mechanism. These findings could be applied to analyze complex samples containing bioparticles of interest within the micron size range. This is the first report where particle elution order is altered in an iEK system.more » « less
-
Abstract Lipid‐coated microbubbles are an important class of gene delivery vehicles activated by ultrasound to locally deliver their DNA payloads to cells. Negatively charged DNA is electrostatically loaded onto the positively charged surface of microbubbles that contain a cationic lipid shell. Characterizing the zeta potential of individual cationic microbubbles to determine a population distribution and how this is affected by DNA complexation is critical to maximize DNA loading and circulation time. Traditional zeta potential analysis provides an ensemble charge measurement for a particle population but cannot measure individual particles to determine a distribution. Here, single‐particle tracking microelectrophoresis technology is applied to measure zeta potentials of individual microbubbles synthesized with different ratios of 1,2‐distearoyl‐3‐trimethylammonium‐propane (DSTAP) cationic lipid as well as loaded with increasing amounts of DNA. Results show that at 0 mol% DSTAP all microbubbles are negatively charged, and at 10 mol% half are positive. All particles are positive at 20 mol% DSTAP but the population shifts to negative values upon incubation with 0.01 pg DNA/microbubble. Analyzing zeta potential on the individual microbubble level is a powerful tool to understand DNA loading across a population of microbubbles and enables microbubble surface charge and nucleic acid loading optimization for delivery applications.more » « less
-
Abstract Tween 20 is frequently added to particle suspensions for reducing the particle–wall adhesion and particle–particle aggregation in microfluidic devices. However, the influences of Tween 20 on the fluid and particle behaviors have been largely ignored. We present in this work the first experimental study of the effects of Tween 20 addition on the electrokinetic transport of fluids and particles in a polydimethylsiloxane microchannel. We find that adding 0.1% v/v Tween 20 to a buffer solution can significantly reduce the electroosmotic mobility as well as the electrokinetic and electrophoretic mobilities of polystyrene particles and yeast cells. Further increasing the Tween 20 concentration within the range typically used in microfluidic applications continues reducing these mobility values, but at a smaller rate. Our finding suggests that Tween 20 should be used with care in electrokinetic microdevices when the flow rate or particle/cell throughput is an important parameter.more » « less
-
AbstractElectrokinetic in-situ recovery is an alternative to conventional mining, relying on the application of an electric potential to enhance the subsurface flow of ions. Understanding the pore-scale flow and ion transport under electric potential is essential for petrophysical properties estimation and flow behavior characterization. The governing physics of electrokinetic transport is electromigration and electroosmotic flow, which depend on the electric potential gradient, mineral occurrence, domain morphology (tortuosity and porosity, grain size and distribution, etc.), and electrolyte properties (local pH distribution and lixiviant type and concentration, etc.). Herein, mineral occurrence and its associated zeta potential are investigated for EK transport. The new Ek model which is designed to solve the EK flow in complex porous media in a highly parallelizable manner includes three coupled equations: (1) Poisson equation, (2) Nernst–Planck equation, and (3) Navier–Stokes equation. These equations were solved using the lattice Boltzmann method within X-ray computed microtomography images. The proposed model is validated against COMSOL multiphysics in a two-dimensional microchannel in terms of fluid flow behavior when the electrical double layer is both resolvable and unresolvable. A more complex chalcopyrite-silica system is then obtained by micro-CT scanning to evaluate the model performance. The effects of mineral occurrence, zeta potential, and electric potential on the three-dimensional chalcopyrite-silica system were evaluated. Although the positive zeta potential of chalcopyrite can induce a flow of ferric ion counter to the direction of electromigration, the net effect is dependent on the occurrence of chalcopyrite. However, the ion flux induced by electromigration was the dominant transport mechanism, whereas advection induced by electroosmosis made a lower contribution. Overall, a pore-scale EK model is proposed for direct simulation on pore-scale images. The proposed model can be coupled with other geochemical models for full physicochemical transport simulations. Meanwhile, electrokinetic transport shows promise as a human-controllable technique because the electromigration of ions and the applied electric potential can be easily controlled externally. Graphical abstractmore » « less
An official website of the United States government

