skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nutrient Enrichment Alters Salt Marsh Fungal Communities and Promotes Putative Fungal Denitrifiers
Award ID(s):
1637630 1603214 1902712
PAR ID:
10064150
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Microbial Ecology
ISSN:
0095-3628
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The pathogen Ophidiomyces ophidiicola (O.o.), widely known as the primary cause of snake fungal disease (SFD) has been detected in Texas’s naïve snakes. Our team set out to begin to characterize O. ophidiicola’s spread in east Texas. From July 2019 until October 2021, we sampled 176 snakes across east Texas and detected 27 positives cases (qPCR confirmed 27/176). From a ribbon snake with clear clinical display, we isolated and cultured what we believe to be the Texas isolate of O. ophidiicola. With over 1/10 snakes that may be infected in East Texas, gives credence to the onset of SFD in Texas. 
    more » « less
  2. Fungi play key roles in ecosystems and human societies as decomposers, nutrient cyclers, mutualists, and pathogens. Estimates suggest that roughly 3–13 million fungal species exist worldwide, yet considerable knowledge gaps exist regarding the mechanisms and consequences, both ecological and social, of fungal dispersal from local to global scales. In this review, we summarize concepts underlying fungal dispersal, review recent research, and explore how fungi possess unique characteristics that can broaden our understanding of general dispersal ecology. We highlight emerging frontiers in fungal dispersal research that integrate technological advances with trait-based ecology, movement ecology, social–ecological systems, and work in unexplored environments. Outstanding research questions across these themes are presented to stimulate theoretical and empirical research in fungal dispersal ecology. Advances in fungal dispersal will improve our understanding of fungal community assembly and biogeography across a range of spatial scales, with implications for ecosystem functioning, global food security, and human health. 
    more » « less
  3. Release prior to first manuscript submission to Fungal Ecology. 
    more » « less
  4. Microbial community dynamics are dependent on interactions between the community members, yet studies of interactions across domains and with multiple experimental approaches are lacking. In this study, we explored interactions between bacteria and fungi associated with decaying fungal necromass using both field-based co-occurrence networks and laboratory-based pairwise interactions. The majority of field-derived bacterial-fungal correlations were negative, suggesting a potentially competitive environment within necromass compared to other systems. Laboratory experiments consisted of bacteria most often reducing fungal growth, while the fungal effect on bacterial growth was more varied and dependent on bacterial taxa. However, these interactions were not consistently predicted by field correlations, highlighting a disconnect between field-based and direct experimental approaches. Our findings suggest that using co-occurrence networks alone to predict BFI outcomes could be misleading, emphasizing the need for more comprehensive, multi-method studies to capture the dynamic and context-dependent nature of microbial interactions. 
    more » « less
  5. Zhao, Ruilin (Ed.)
    As the continuation of Fungal Diversity Notes series, the current paper is the 16th contribution to this series. A total of 103 taxa from seven classes in Ascomycota and Basidiomycota are included here. Of these 101 taxa, four new genera, 89 new species, one new combination, one new name and six new records are described in detail along with information of hosts and geographic distributions. The four genera newly introduced are Ascoglobospora, Atheliella, Rufoboletus and Tenuimyces. Newly described species are Akanthomyces xixiuensis, Agaricus agharkarii, A. albostipitatus, Amphisphaeria guttulata, Ascoglobospora marina, Astrothelium peudostraminicolor, Athelia naviculispora, Atheliella conifericola, Athelopsis subglaucina, Aureoboletus minimus, A. nanlingensis, Autophagomyces incertus, Beltrania liliiferae, Beltraniella jiangxiensis, Botryobasidium coniferarum, Calocybella sribuabanensis, Calonarius caesiofulvus, C. nobilis, C. pacificus, C. pulcher, C. subcorrosus, Cortinarius flaureifolius, C. floridaensis, C. subiodes, Crustomyces juniperi, C. scytinostromoides, Cystostereum subsirmaurense, Dimorphomyces seemanii, Fulvoderma microporum, Ginnsia laricicola, Gomphus zamorinorum, Halobyssothecium sichuanense, Hemileccinum duriusculum, Henningsomyces hengduanensis, Hygronarius californicus, Kneiffiella pseudoabdita, K. pseudoalutacea, Laboulbenia bifida, L. tschirnhausii, L. tuberculata, Lambertella dipterocarpacearum, Laxitextum subrubrum, Lyomyces austro-occidentalis, L. crystallina, L. guttulatus, L. niveus, L. tasmanicus, Marasmius centrocinnamomeus, M. ferrugineodiscus, Megasporoporia tamilnaduensis, Meruliopsis crystallina, Metuloidea imbricata, Moniliophthora atlantica, Mystinarius ochrobrunneus, Neomycoleptodiscus alishanense, Nigrograna kunmingensis, Paracremonium aquaticum, Parahelicomyces dictyosporus, Peniophorella sidera, P. subreticulata, Phlegmacium fennicum, P. pallidocaeruleum, Pholiota betulicola, P. subcaespitosa, Pleurotheciella hyalospora, Pleurothecium aseptatum, Resupinatus porrigens, Russula chlorina, R. chrysea, R. cruenta, R. haematina, R. luteocarpa, R. sanguinolenta, Synnemellisia punensis, Tenuimyces bambusicola, Thaxterogaster americanoporphyropus, T. obscurovibratilis, Thermoascus endophyticus, Trechispora alba, T. perminispora, T. subfarinacea, T. tuberculata, Tremella sairandhriana, Tropicoporus natarajaniae, T. subramaniae, Usnea kriegeriana, Wolfiporiella macrospora and Xylodon muchuanensis. Rufoboletus hainanensis is newly transferred from Butyriboletus, while a new name Russula albocarpa is proposed for Russula leucocarpa G.J. Li & Chun Y. Deng an illegitimate later homonym of Russula leucocarpa (T. Lebel) T. Lebel. The new geographic distribution regions are recorded for Agaricus bambusetorum, Bipolaris heliconiae, Crinipellis trichialis, Leucocoprinus cretaceus, Halobyssothecium cangshanense and Parasola setulosa. Corresponding to morphological characters, phylogenetic evidence is also utilized to place the above-mentioned taxa in appropriate taxonomic positions. The current morphological and phylogenetic data is helpful for further clarification of species diversity and exploration of evolutionary relationships in the related fungal groups. 
    more » « less