skip to main content

Title: Encoding of error and learning to correct that error by the Purkinje cells of the cerebellum
Authors:
; ; ;
Award ID(s):
1723967
Publication Date:
NSF-PAR ID:
10064376
Journal Name:
Nature Neuroscience
Volume:
21
Page Range or eLocation-ID:
736-743
ISSN:
2027-5986
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a lightweight process to guide error report authoring. We take the perspective that error reports are really classifiers of program information. They should therefore be subjected to the same measures as other classifiers (e.g., precision and recall). We formalize this perspective as a process for assessing error reports, describe our application of this process to an actual programming language, and present a preliminary study on the utility of the resulting error reports.
  2. Multiplicity code decoders are based on Hermite polynomial interpolation with error correction. In order to have a unique Hermite interpolant one assumes that the field of scalars has characteristic 0 or >= k+1, where k is the maximum order of the derivatives in the list of values of the polynomial and its derivatives which are interpolated. For scalar fields of characteristic k+1, the minimum number of values for interpolating a polynomial of degree <= D is D+1+2E(k+1) when <= E of the values are erroneous. Here we give an error-correcting Hermite interpolation algorithm that can tolerate more errors, assuming thatmore »the characteristic of the scalar field is either 0 or >= D+1. Our algorithm requires (k+1)D + 1 - (k+1)k/2 + 2E values. As an example, we consider k = 2. If the error ratio (number of errors)/(number of evaluations) <= 0.16, our new algorithm requires ceiling( (4+7/17) D - (1+8 /17) ) values, while multiplicity decoding requires 25D+25 values. If the error ratio is <= 0.2, our algorithm requires 5D-2 evaluations over characteristic 0 or >= D+1, while multiplicity decoding for an error ratio 0.2 over fields of characteristic 3 is not possible for D >= 3. Our algorithm is based on Reed-Solomon interpolation without multiplicities, which becomes possible for Hermite interpolation because of the high redundancy necessary for error-correction.« less