Emerging lithium-ion battery systems require high-fidelity electrochemical models for advanced control, diagnostics, and design. Accordingly, battery parameter estimation is an active research domain where novel algorithms are being developed to calibrate complex models from input-output data. Amidst these efforts, little focus has been placed on the fundamental mechanisms governing estimation accuracy, spurring the question, why is an estimate accurate or inaccurate? In response, we derive a generalized estimation error equation under the commonly adopted least-squares objective function, which reveals that the error can be represented as a combination of system uncertainties (i.e., in model, measurement, and parameter) and uncertainty-propagating sensitivity structures in the data. We then relate the error equation to conventional error analysis criteria, such as the Fisher information matrix, Cramér-Rao bound, and parameter sensitivity, to assess the benefits and limitations of each. The error equation is validated through several uni- and bivariate estimations of lithium-ion battery electrochemical parameters using experimental data. These results are also analyzed with the error equation to study the error compositions and parameter identifiability under different data. Finally, we show that adding target parameters to the estimation without increasing the amount of data intrinsically reduces the robustness of the results to system uncertainties.
- Award ID(s):
- 9702860
- PAR ID:
- 10317873
- Date Published:
- Journal Name:
- 2001 IEEE International Electric Machines and Drives Conference (IEMDC)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Simultaneous real-time monitoring of measurement and parameter gross errors poses a great challenge to distribution system state estimation due to usually low measurement redundancy. This paper presents a gross error analysis framework, employing μPMUs to decouple the error analysis of measurements and parameters. When a recent measurement scan from SCADA RTUs and smart meters is available, gross error analysis of measurements is performed as a post-processing step of non-linear DSSE (NLSE). In between scans of SCADA and AMI measurements, a linear state estimator (LSE) using μPMU measurements and linearized SCADA and AMI measurements is used to detect parameter data changes caused by the operation of Volt/Var controls. For every execution of the LSE, the variance of the unsynchronized measurements is updated according to the uncertainty introduced by load dynamics, which are modeled as an Ornstein–Uhlenbeck random process. The update of variance of unsynchronized measurements can avoid the wrong detection of errors and can model the trustworthiness of outdated or obsolete data. When new SCADA and AMI measurements arrive, the LSE provides added redundancy to the NLSE through synthetic measurements. The presented framework was tested on a 13-bus test system. Test results highlight that the LSE and NLSE processes successfully work together to analyze bad data for both measurements and parameters.more » « less
-
Abstract Many methods have been developed for estimating the parameters of biexponential decay signals, which arise throughout magnetic resonance relaxometry (MRR) and the physical sciences. This is an intrinsically ill‐posed problem so that estimates can depend strongly on noise and underlying parameter values. Regularization has proven to be a remarkably efficient procedure for providing more reliable solutions to ill‐posed problems, while, more recently, neural networks have been used for parameter estimation. We re‐address the problem of parameter estimation in biexponential models by introducing a novel form of neural network regularization which we call input layer regularization (ILR). Here, inputs to the neural network are composed of a biexponential decay signal augmented by signals constructed from parameters obtained from a regularized nonlinear least‐squares estimate of the two decay time constants. We find that ILR results in a reduction in the error of time constant estimates on the order of 15%–50% or more, depending on the metric used and signal‐to‐noise level, with greater improvement seen for the time constant of the more rapidly decaying component. ILR is compatible with existing regularization techniques and should be applicable to a wide range of parameter estimation problems.
-
Nucleic acid kinetic simulators aim to predict the kinetics of interacting nucleic acid strands. Many simulators model the kinetics of interacting nucleic acid strands as continuous-time Markov chains (CTMCs). States of the CTMCs represent a collection of secondary structures, and transitions between the states correspond to the forming or breaking of base pairs and are determined by a nucleic acid kinetic model. The number of states these CTMCs can form may be exponentially large in the length of the strands, making two important tasks challenging, namely, mean first passage time (MFPT) estimation and parameter estimation for kinetic models based on MFPTs. Gillespie’s stochastic simulation algorithm (SSA) is widely used to analyze nucleic acid folding kinetics, but could be computationally expensive for reactions whose CTMC has a large state space or for slow reactions. It could also be expensive for arbitrary parameter sets that occur in parameter estimation. Our work addresses these two challenging tasks, in the full state space of all non-pseudoknotted secondary structures of each reaction. In the first task, we show how to use a reduced variance stochastic simulation algorithm (RVSSA), which is adapted from SSA, to estimate the MFPT of a reaction’s CTMC. In the second task, we estimate model parameters based on MFPTs. To this end, first, we show how to use a generalized method of moments (GMM) approach, where we minimize a squared norm of moment functions that we formulate based on experimental and estimated MFPTs. Second, to speed up parameter estimation, we introduce a fixed path ensemble inference (FPEI) approach, that we adapt from RVSSA. We implement and evaluate RVSSA and FPEI using the Multistrand kinetic simulator. In our experiments on a dataset of DNA reactions, FPEI speeds up parameter estimation compared to inference using SSA, by more than a factor of three for slow reactions. Also, for reactions with large state spaces, it speeds up parameter estimation by more than a factor of two.more » « less
-
The mechanical properties of joints may impact a system’s static and dynamic behavior. Since connections are usually complex, modeling their geometric details could take time and effort. Thus, joints of structures are often overlooked in model creation and calibration. Therefore, reliable analytical modeling of in-service structures requires accurate and efficient parameter estimation of the connections in their simplified models. However, joints are physically small parts of a system, and parameter estimation techniques may not be sufficiently sensitive to the variations of connections’ mechanical properties. This paper examines the finite element model updating of a laboratory steel grid focusing on the structural parameter estimation of its complex connections using modal data. The mechanical properties of the joints are parametrized by added mass and reduced rigidity. Therefore, several modified models with different combinations of heavier semi-rigid joints are developed. Each model is updated using two modal-based error functions, and the most representative updated model is selected. The results demonstrate how the grid modal outputs are influenced by updating the mass and stiffness of its connections. Moreover, mass and stiffness interactions of the grid joints in the parameter estimation procedure are illustrated. The updated models can efficiently simulate the structural behavior of the grid with increased confidence and reliability.