skip to main content

Title: Electrical Resistivity Tomography of Claypan Soils in Southeastern Kansas
Claypan soils cover approximately 10 million acres across several states in the central United States. The soils are characterized by a highly impermeable clay layer within the profile that impedes water flow and root growth. While some claypan soils can be productive, they must be carefully managed to avoid reductions to crop productivity due to root restrictions, water, and nutrient limitations. Clay soils are usually resistant to erosion but may exacerbate erosion of the silt-loam topsoil. Soil production potential is the capacity of soil to produce at a given level (yield per acre). The productive capacity is tied to soil characteristics, which can be highly variable within a field. In this project, we have used imagery analysis to study the aerial images and terrain of fields during different productive times of the year to identify where soil samples should be collected for more discrete analysis. Soil samples provide valuable information; however, the amount of data obtained from a relatively small area within a field does not provide sufficient information to delineate the subsurface characteristics. To address the limitations of sampling, we have also employed the use of yield maps collected from commercial yield monitors on production-scale combines and surface electrical more » conductivity measurements (Sassenrath and Kulesza, 2017). Soil conductivity is a measurement of how well a representative volume of soil conducts electricity. Soil conductivity is a function of the soil clay content, moisture content, and other measurable soil properties (Kitchen et al., 2003); as such, it has become a valuable tool for mapping in-field variability. The main advantage of a soil conductivity measurement is that the entire surface of a field can be imaged. The disadvantage of a soil conductivity measurement is that data are only collected near the surface (10 – 30 inches) and the measurements are relative measurements. This means that the conductivity mappers can identify changes in soil properties, but they cannot directly tell researchers what caused these changes. Electrical resistivity tomography (ERT) is a popular near-surface geophysical measurement for geophysical and engineering applications. The term “near-surface” generally means down to around 30 feet in the subsurface. Electrical resistivity is the reciprocal measurement of electrical conductivity; therefore, both systems measure differences in the same soil properties. ERT measurements are different than surface electrical conductivity measurements because ERT collects a “slice” of data into the subsurface, as opposed to only changes at the surface area. Relative measurements, similar to those collected in an electrical conductivity survey, are collected; however, in ERT studies the data are mathematically inverted to yield the true electrical resistivity of the soil with depth. This allows an interpretation of the changing soil properties with depth to reduce the required amount of sampling. A disadvantage of an ERT survey is that the data acquisition is stationary so mapping an entire field is not feasible. We have used a coupled process of imagery and terrain analysis, yield maps, and electrical conductivity measurements to guide the locations of ERT surveys in this project (Tucker-Kulesza et al. 2017). « less
Authors:
; ;
Award ID(s):
1705823
Publication Date:
NSF-PAR ID:
10064383
Journal Name:
Kansas Agricultural Experiment Station Research Reports
Volume:
4
Issue:
3
Page Range or eLocation-ID:
1-8
Sponsoring Org:
National Science Foundation
More Like this
  1. The objective of this research is to determine the fundamental mechanisms that cause loss of topsoil. Claypan soils cover approximately 10 million acres in the United States and are characterized by a highly impermeable layer below the topsoil. This impermeable layer acts as a barrier for infiltrating water which may be increasing the erosion rate and sediment transport of upper soil layers. This increasing topsoil depletion ultimately limits the productive capacity of agronomic fields. This study focuses on the undermining of the topsoil due to the impermeable claypan layer in Southeastern Kansas where the topsoil depth is limited and, in places, the claypan layer is exposed at the surface. Using LiDAR-derived digital elevation maps, the potential areas of critical soil loss and hydrologic flow patterns is determined. Surface soil apparent electrical conductivity (EC) measurements highlight the soil variability throughout the field. Electrical Resistivity Tomography (ERT) surveys is also performed to determine the depth to the claypan layer in low and high crop yield areas. The results indicate that the areas of high EC correlated with high clay content and low crop yield, while areas of low EC correlated with high crop yield. The results also indicate that the claypan layermore »in the low crop yield area is 1.0 m thick and significantly thins once reaching the high crop yield area. The next phase of this ongoing research is to measure the soil properties between the low and high crop yield areas, measure the movement of water at the claypan interface, and measure sediment transport at the claypan interface.« less
  2. Abstract Understanding the interactions among agricultural processes, soil, and plants is necessary for optimizing crop yield and productivity. This study focuses on developing effective monitoring and analysis methodologies that estimate key soil and plant properties. These methodologies include data acquisition and processing approaches that use unmanned aerial vehicles (UAVs) and surface geophysical techniques. In particular, we applied these approaches to a soybean farm in Arkansas to characterize the soil–plant coupled spatial and temporal heterogeneity, as well as to identify key environmental factors that influence plant growth and yield. UAV-based multitemporal acquisition of high-resolution RGB (red–green–blue) imagery and direct measurements were used to monitor plant height and photosynthetic activity. We present an algorithm that efficiently exploits the high-resolution UAV images to estimate plant spatial abundance and plant vigor throughout the growing season. Such plant characterization is extremely important for the identification of anomalous areas, providing easily interpretable information that can be used to guide near-real-time farming decisions. Additionally, high-resolution multitemporal surface geophysical measurements of apparent soil electrical conductivity were used to estimate the spatial heterogeneity of soil texture. By integrating the multiscale multitype soil and plant datasets, we identified the spatiotemporal co-variance between soil properties and plant development and yield. Our novelmore »approach for early season monitoring of plant spatial abundance identified areas of low productivity controlled by soil clay content, while temporal analysis of geophysical data showed the impact of soil moisture and irrigation practice (controlled by topography) on plant dynamics. Our study demonstrates the effective coupling of UAV data products with geophysical data to extract critical information for farm management.« less
  3. Claypan soils cover approximately 40,469 km2 in the United States and are characterized by a highly impermeable layer within 0.5 m from the ground surface. This impermeable layer acts as a barrier for infiltrating water, which may increase erosion rates and sediment transport. Two of the main problems associated with these processes are abutment scour and reservoir sedimentation. This study focuses on the undermining of surficial soils due to an impermeable claypan layer in Southeastern Kansas. The potential areas of critical soil loss and hydrologic flow patterns were determined using LiDAR-derived digital elevation maps across two 0.45 km2 sites. These sites were located in areas of both high and low elevation. Electrical resistivity tomography (ERT) was used in areas identified with LiDAR to measure the depth to claypan, which was originally believed to be uniform across the region. The results indicated that the claypan layer was located from 0.5 to 0.75 m and dissipated moving across the site from an area of high elevation to an area of low elevation. Undisturbed soil samples were collected based on the ERT analysis, in areas with and without the claypan. An erosion function apparatus (EFA) was used to directly measure erosion due tomore »sheet flow and to identify the controlling mechanism causing surficial soil loss. The knowledge gained on claypan erosion mechanisms will improve the prediction of near surface soil erodibility to support aging infrastructure.« less
  4. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems mayMore>>
  5. The Sośnica Hill volcano is part of the Oligocene to Miocene (30.9–20.0 Ma) Strzelin volcanic field. . It is located 100 km east of the Ohře Rift in the eastern part of the Fore-Sudetic Block, south of the town of Strzelin, Poland. Modern quarrying has exposed the sub-volcanic magma feeder system of the central part of the volcano and an extrusive volcanic succession that includes a 40 m thick sequence of lava flows and pyroclastic deposits that col- lectively form a complex scoria cone. Geophysical data (ground magnetometry and electric resistivity tomogra- phy (ERT)) reveal sharp linear anomalies that are interpreted to reflect normal faults dissecting the volcano. The ERT data map both high and low resistivity bodies, likely representing coherent clay-free dry rocks and partly argilized volcaniclastic deposits, respectively. Paleomagnetic data from 20 intrusive sites reveal two populations of reverse polarity site mean data; 11 sites are of low dispersion and yield a group mean direction that is discor- dant to the expected field direction, while six sites are highly scattered. Three sites did not yield interpretable re- sults. We interpret the 11 sites as time-averaged field directions that are discordant to the expected field. The high dispersion ofmore »the remaining six sites are interpreted to indicate sub-volcanic deformation associated with the growth of the volcanic construct or multiple magma pulses over an extended period of time relative to secu- lar variation. AMS data from 35 sites show a range of flow directions that vary across the quarry without an or- derly pattern of fabric orientations. The flow pattern identified from dike paired margin data exhibits sub- vertical upward flow, sub-vertical downward, and moderately inclined northwest flow. Field observations and mapping indicate a complex development of the system in terms of styles of eruptive activity and structure of the final volcanic edifice. The activity included Strombolian and effusive phases, followed by phreatomagmatic, Hawaiian and again effusive eruptions. Such diversity of eruptive styles shows that the origin of the volcano is more complex than a simple, ‘textbook’ monogenetic scoria cone. Palaesoil on top of Strombolian deposits docu- ment a longer break in activity, after which eruptions resumed with different style; this is also not typical of monogenetic cones. The lateral variation in the volcanic succession suggests eruptions from several smaller, local vents. The complex subvolcanic magma flow patterns recorded in dikes match the variation of surface eruptive products and documents dynamically changing magma distribution paths in the near-surface and intra-cone part of the feeding system of the volcano.« less