Tailored topological stabilizer codes in two dimensions have been shown to exhibit high-storage-threshold error rates and improved subthreshold performance under biased Pauli noise. Three-dimensional (3D) topological codes can allow for several advantages including a transversal implementation of non-Clifford logical gates, single-shot decoding strategies, and parallelized decoding in the case of fracton codes, as well as construction of fractal-lattice codes. Motivated by this, we tailor 3D topological codes for enhanced storage performance under biased Pauli noise. We present Clifford deformations of various 3D topological codes, such that they exhibit a threshold error rate of 50% under infinitely biased Pauli noise. Our examples include the 3D surface code on the cubic lattice, the 3D surface code on a checkerboard lattice that lends itself to a subsystem code with a single-shot decoder, and the 3D color code, as well as fracton models such as the X-cube model, the Sierpiński model, and the Haah code. We use the belief propagation with ordered statistics decoder (BP OSD) to study threshold error rates at finite bias. We also present a rotated layout for the 3D surface code, which uses roughly half the number of physical qubits for the same code distance under appropriate boundary conditions. Imposing coprime periodic dimensions on this rotated layout leads to logical operators of weight O(n) at infinite bias and a corresponding exp[−O(n)] subthreshold scaling of the logical failure rate, where n is the number of physical qubits in the code. Even though this scaling is unstable due to the existence of logical representations with O(1) low-rate and O(n2/3) high-rate Pauli errors, the number of such representations scales only polynomially for the Clifford-deformed code, leading to an enhanced effective distance.
more »
« less
Synthesis of Logical Clifford Operators via Symplectic Geometry
Quantum error-correcting codes can be used to protect qubits involved in quantum computation. This requires that logical operators acting on protected qubits be translated to physical operators (circuits) acting on physical quantum states. We propose a mathematical framework for synthesizing physical circuits that implement logical Clifford operators for stabilizer codes. Circuit synthesis is enabled by representing the desired physical Clifford operator in CN ×N as a 2m × 2m binary sym- plectic matrix, where N = 2m. We show that for an [m, m − k] stabilizer code every logical Clifford operator has 2k(k+1)/2 symplectic solutions, and we enumerate them efficiently using symplectic transvections. The desired circuits are then obtained by writing each of the solutions as a product of elementary symplectic matrices. For a given operator, our assembly of all of its physical realizations enables optimization over them with respect to a suitable metric. Our method of circuit synthesis can be applied to any stabilizer code, and this paper provides a proof of concept synthesis of universal Clifford gates for the well- known [6, 4, 2] code. Programs implementing our algorithms can be found at https://github.com/nrenga/symplectic-arxiv18a.
more »
« less
- Award ID(s):
- 1718494
- PAR ID:
- 10064523
- Date Published:
- Journal Name:
- IEEE International Symposium on Information Theory
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A basic question in the theory of fault-tolerant quantum computation is to understand the fundamental resource costs for performing a universal logical set of gates on encoded qubits to arbitrary accuracy. Here we consider qubits encoded with constant space overhead (i.e. finite encoding rate) in the limit of arbitrarily large code distance d through the use of topological codes associated to triangulations of hyperbolic surfaces. We introduce explicit protocols to demonstrate how Dehn twists of the hyperbolic surface can be implemented on the code through constant depth unitary circuits, without increasing the space overhead. The circuit for a given Dehn twist consists of a permutation of physical qubits, followed by a constant depth local unitary circuit, where locality here is defined with respect to a hyperbolic metric that defines the code. Applying our results to the hyperbolic Fibonacci Turaev-Viro code implies the possibility of applying universal logical gate sets on encoded qubits through constant depth unitary circuits and with constant space overhead. Our circuits are inherently protected from errors as they map local operators to local operators while changing the size of their support by at most a constant factor; in the presence of noisy syndrome measurements, our results suggest the possibility of universal fault tolerant quantum computation with constant space overhead and time overhead of O ( d / log d ) . For quantum circuits that allow parallel gate operations, this yields the optimal scaling of space-time overhead known to date.more » « less
-
null (Ed.)Universal quantum computation requires the implementation of a logical non-Clifford gate. In this paper, we characterize all stabilizer codes whose code subspaces are preserved under physical T and T † gates. For example, this could enable magic state distillation with non-CSS codes and, thus, provide better parameters than CSS-based protocols. However, among non-degenerate stabilizer codes that support transversal T, we prove that CSS codes are optimal. We also show that triorthogonal codes are, essentially, the only family of CSS codes that realize logical transversal T via physical transversal T. Using our algebraic approach, we reveal new purely-classical coding problems that are intimately related to the realization of logical operations via transversal T. Decreasing monomial codes are also used to construct a code that realizes logical CCZ. Finally, we use Ax's theorem to characterize the logical operation realized on a family of quantum Reed-Muller codes. This result is generalized to finer angle Z-rotations in https://arxiv.org/abs/1910.09333.more » « less
-
We propose a new model of quantum computation comprised of low-weight measurement sequences that simultaneously encode logical information, enable error correction, and apply logical gates. These measurement sequences constitute a new class of quantum error-correcting codes generalizing Floquet codes, which we call dynamic automorphism (DA) codes. We construct an explicit example, the DA color code, which is assembled from short measurement sequences that can realize all 72 automorphisms of the 2D color code. On a stack of triangular patches, the DA color code encodes logical qubits and can implement the full logical Clifford group by a sequence of two- and, more rarely, three-qubit Pauli measurements. We also make the first step towards universal quantum computation with DA codes by introducing a 3D DA color code and showing that a non-Clifford logical gate can be realized by adaptive two-qubit measurements.more » « less
-
Utilizing the framework of\mathbb{Z}_2 lattice gauge theories in the context of Pauli stabilizer codes, we present methodologies for simulating fermions via qubit systems on a two-dimensional square lattice. We investigate the symplectic automorphisms of the Pauli module over the Laurent polynomial ring. This enables us to systematically increase the code distances of stabilizer codes while fixing the rate between encoded logical fermions and physical qubits. We identify a family of stabilizer codes suitable for fermion simulation, achieving code distances of d=2,3,4,5,6,7, allowing correction of any\lfloor \frac{d-1}{2} \rfloor -qubit error. In contrast to the traditional code concatenation approach, our method can increase the code distances without decreasing the (fermionic) code rate. In particular, we explicitly show all stabilizers and logical operators for codes with code distances of d=3,4,5. We provide syndromes for all Pauli errors and invent a syndrome-matching algorithm to compute code distances numerically.more » « less