skip to main content


Title: Low Reynolds number wake modification using a Gurney flap
We numerically examine the use of Gurney flap to modify the two-dimensional wake dynamics for lift enhancement on NACA 0000 (flat plate), 0006, 0012 and 0018 airfoils. Incompressible flows over the airfoils at different angles of attack are considered at Re = 1000. It is observed that the attachment of the Gurney flap at the trailing edge is able to enhance the lift force experienced by the airfoil appreciably with increase in Gurney flap height. The lift-to-drag ratio of the airfoils is also observed to increase at lower angles of attack. The lift spectra and airfoil wake are examined to reveal the effect of the Gurney flap on the formation of different characteristic wake modes and the associated change in the aerodynamic forces exerted on the airfoils. Based on the observations, we classify the resulting wakes into four distinct modes. The emergence of these modes (steady, 2S, P and 2P) are mapped over a wide range of angles of attack and Gurney flap heights for all four airfoils in consideration.  more » « less
Award ID(s):
1632003
NSF-PAR ID:
10064540
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
55th AIAA Aerospace Sciences Meeting
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Effect of airfoil thickness on onset of dynamic stall is investigated using large eddy simulations at chord-based Reynolds number of 200 000. Four symmetric NACA airfoils of thickness-to-chord ratios of 9 %, 12 %, 15 % and 18 % are studied. The three-dimensional Navier–Stokes solver, FDL3DI is used with a sixth-order compact finite difference scheme for spatial discretization, second-order implicit time integration and discriminating filters to remove unresolved wavenumbers. A constant-rate pitch-up manoeuver is studied with the pitching axis located at the airfoil quarter chord. Simulations are performed in two steps. In the first step, the airfoil is kept static at a prescribed angle of attack ( $=4^{\circ }$ ). In the second step, a ramp function is used to smoothly increase the pitch rate from zero to the selected value and then the pitch rate is held constant until the angle of attack goes past the lift-stall point. The solver is verified against experiments for flow over a static NACA 0012 airfoil. Static simulation results of all airfoil geometries are also compared against XFOIL predictions with a generally favourable agreement. FDL3DI predicts two-stage transition for thin airfoils (9 % and 12 %), which is not observed in the XFOIL results. The dynamic simulations show that the onset of dynamic stall is marked by the bursting of the laminar separation bubble (LSB) in all the cases. However, for the thickest airfoil tested, the reverse flow region spreads over most of the airfoil and reaches the LSB location immediately before the LSB bursts and dynamic stall begins, suggesting that the stall could be triggered by the separated turbulent boundary layer. The results suggest that the boundary between different classifications of dynamic stall, particularly leading edge stall versus trailing edge stall, is blurred. The dynamic-stall onset mechanism changes gradually from one to the other with a gradual change in some parameters, in this case, airfoil thickness. 
    more » « less
  2. A bio-inspired, passively deployable flap attached to an airfoil by a torsional spring of fixed stiffness can provide significant lift improvements at post-stall angles of attack. In this work, we describe a hybrid active–passive variant to this purely passive flow control paradigm, where the stiffness of the hinge is actively varied in time to yield passive fluid–structure interaction of greater aerodynamic benefit than the fixed-stiffness case. This hybrid active–passive flow control strategy could potentially be implemented using variable-stiffness actuators with less expense compared with actively prescribing the flap motion. The hinge stiffness is varied via a reinforcement-learning-trained closed-loop feedback controller. A physics-based penalty and a long–short-term training strategy for enabling fast training of the hybrid controller are introduced. The hybrid controller is shown to provide lift improvements as high as 136 % and 85 % with respect to the flapless airfoil and the best fixed-stiffness case, respectively. These lift improvements are achieved due to large-amplitude flap oscillations as the stiffness varies over four orders of magnitude, whose interplay with the flow is analysed in detail. 
    more » « less
  3. Abstract

    Conformal mapping techniques have been used in many applications in the two-dimensional environments of engineering and physics, especially in the two-dimensional incompressible flow field that was introduced by Prandtl and Tietjens. These methods show reasonable results in the case of comprehensive analysis of the local coefficients of complex airfoils. The mathematical form of conformal mapping always locally preserves angles of the complex functions but it may change the length of the complex model. This research is based on the design of turbine blades as hydrofoils divided into different individual hydrofoils with decreasing thickness from root to tip. The geometric shapes of these hydrofoils come from the original FX77W121 airfoil shape and from interpolating between the FX77W121, FX77W153, and FX77W258 airfoil shapes. The last three digits of this airfoil family approximate the thickness ratio times 1000 (FX77153 => 15.3 % thickness ratio). Of the different airfoil shapes specified for the optimal rotor, there are 23 unique shapes.[15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 28] This study describes the advantage of using at least one complex variable technique of transformation conformal mapping in two dimensions.

    Conformal mapping techniques are used to form a database for sectional lift and drag coefficients based on turbine blade design to be used in Blade Element Momentum (BEM) theory to predict the performance of a three bladed single rotor horizontal axis ocean current turbine (1.6-meter diameter) by considering the characteristics of the sea-water. In addition, by considering the fact that in the real ocean, the underwater ocean current turbines encounter different velocities, the maximum brake power will be investigated for different incoming current velocities. The conformal mapping technique is used to calculate the local lift coefficients of different hydrofoils with respect to different angles of attack: −180 ≤ AOA ≤ +180. These results will be compared to those from other methods obtained recently by our research group. This method considers the potential flow analysis module that follows a higher-order panel method based on the geometric properties of each hydrofoil cross section. The velocity and pressure fields are obtained directly by the applications of Bernoulli’s principle, then the lift coefficients are calculated from the results of the integration of the pressure field along the hydrofoil surface for any angle of attack. Ultimately, the results of this research will be used for further investigation of the design and construction of a small-scale experimental ocean current turbine to be tested in the towing tank at the University of New Orleans.

     
    more » « less
  4. Covert feathers are a set of self-actuating, passively deployable feathers located on the upper surfaces of wings that augment lift at post-stall angles of attack. Due to these benefits, the study of covert-inspired passive flow control devices is becoming an increasingly active area of research. In this work, we numerically investigate the aerodynamic benefits of torsionally mounting five covert-inspired flaps on the upper surface of a NACA0012 airfoil. Two-dimensional high-fidelity simulations of the flow past the airfoil–flap system at low Re=1000 and a high angle of attack of 20∘ were performed. A parametric study was conducted by varying the flap moment of inertia and torsional hinge stiffness to characterize the aerodynamic performance of this system. Lift improvements as high as 25% were attained. Two regimes of flap dynamics were identified that provided considerable aerodynamic benefits. A detailed investigation of the flow physics of both these regimes was conducted to understand the physical mechanisms by which the passively deployed flaps augmented the lift of the airfoil. In both regimes, the flap was found to act as a barrier in preventing the upstream propagation of reverse flow due to flow separation and trailing edge vortex. The torsional spring and flap inertia yielded additional flap dynamics that further modulated the surrounding flow and associated performance metrics. We discuss some of these fluid–structure interaction effects in this article. 
    more » « less
  5. Abstract

    Birds are agile flyers that can maintain flight at high angles of attack (AoA). Such maneuverability is partially enabled by the articulation of wing feathers. Coverts are one of the feather systems that has been observed to deploy simultaneously on both the upper and lower wing sides during flight. This study uses a feather-inspired flap system to investigate the effect of upper and lower side coverts on the aerodynamic forces and moments, as well as examine the interactions between both types of flaps. Results from wind tunnel experiments show that the covert-inspired flaps can modulate lift, drag, and pitching moment. Moreover, simultaneously deflecting covert-inspired flaps on the upper and lower sides of the airfoil exhibit larger force and moment modulation ranges compared to a single-sided flap alone. Data-driven models indicate significant interactions between the upper and lower side flaps, especially during the pre-stall regime for the lift and drag response. The findings from this study are also biologically relevant to the observations of covert feathers deployment during bird flight. Thus, the methods and results summarized here can be used to formulate new hypotheses about the coverts role in bird flight and develop a framework to design covert-inspired flow and flight control devices for engineered vehicles.

     
    more » « less